Epstein Files Full PDF

CLICK HERE
Technopedia Center
PMB University Brochure
Faculty of Engineering and Computer Science
S1 Informatics S1 Information Systems S1 Information Technology S1 Computer Engineering S1 Electrical Engineering S1 Civil Engineering

faculty of Economics and Business
S1 Management S1 Accountancy

Faculty of Letters and Educational Sciences
S1 English literature S1 English language education S1 Mathematics education S1 Sports Education
teknopedia

  • Registerasi
  • Brosur UTI
  • Kip Scholarship Information
  • Performance
Flag Counter
  1. World Encyclopedia
  2. Charge pump - Wikipedia
Charge pump - Wikipedia
From Wikipedia, the free encyclopedia
Electric converter
This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (November 2015) (Learn how and when to remove this message)
Two-stage charge pump with DC voltage supply and a pump control signal S0
Dickson charge pump with diodes
Dickson charge pump with MOSFETs
PLL charge pump

A charge pump is a kind of DC-to-DC converter that uses capacitors for energetic charge storage to raise or lower voltage. Charge-pump circuits are capable of high efficiencies, sometimes as high as 90–95%, while being electrically simple circuits.

Description

[edit]

Charge pumps use some form of switching device to control the connection of a supply voltage across a load through a capacitor in a two stage cycle. In the first stage a capacitor is connected across the supply, charging it to that same voltage. In the second stage the circuit is reconfigured so that the capacitor is in series with the supply and the load. This doubles the voltage across the load - the sum of the original supply and the capacitor voltages. The pulsing nature of the higher voltage switched output is often smoothed by the use of an output capacitor.

An external or secondary circuit drives the switching, typically at tens of kilohertz up to several megahertz. The high frequency minimizes the amount of capacitance required, as less charge needs to be stored and dumped in a shorter cycle.

Charge pumps can double voltages, triple voltages, halve voltages, invert voltages, fractionally multiply or scale voltages (such as ×3⁄2, ×4⁄3, ×2⁄3, etc.) and generate arbitrary voltages by quickly alternating between modes, depending on the controller and circuit topology.

They are commonly used in low-power electronics (such as mobile phones) to raise and lower voltages for different parts of the circuitry - minimizing power consumption by controlling supply voltages carefully.

Terminology for PLL

[edit]

The term charge pump is also commonly used in phase-locked loop (PLL) circuits even though there is no pumping action involved unlike in the circuit discussed above. A PLL charge pump is merely a bipolar switched current source. This means that it can output positive and negative current pulses into the loop filter of the PLL. It cannot produce higher or lower voltages than its power and ground supply levels.

Applications

[edit]
  • A common application for charge-pump circuits is in RS-232 level shifters, where they are used to derive positive and negative voltages (often +10 V and −10 V) from a single 5 V or 3 V power supply rail.
  • Charge pumps can also be used as LCD or white-LED drivers, generating high bias voltages from a single low-voltage supply, such as a battery.
  • Charge pumps are extensively used in NMOS memories and microprocessors to generate a negative voltage "VBB" (about −3 V), which is connected to the substrate. This guarantees that all N+-to-substrate junctions are reversely biased by 3 V or more, decreasing junction capacitance and increasing circuit speed.[1]
  • A charge pump providing a negative voltage spike has been used in NES-compatible games not licensed by Nintendo in order to stun the Nintendo Entertainment System lockout chip.[2]
  • As of 2007, charge pumps are integrated into nearly all EEPROM and flash-memory integrated circuits. These devices require a high-voltage pulse to "clean out" any existing data in a particular memory cell before it can be written with a new value. Early EEPROM and flash-memory devices required two power supplies: +5 V (for reading) and +12 V (for erasing). As of 2007[update], commercially available flash memory and EEPROM memory requires only one external power supply – generally 1.8 V or 3.3 V. A higher voltage, used to erase cells, is generated internally by an on-chip charge pump.
  • Charge pumps are used in H bridges in high-side drivers for gate-driving high-side n-channel power MOSFETs and IGBTs. When the centre of a half bridge goes low, the capacitor is charged through a diode, and this charge is used to later drive the gate of the high-side FET a few volts above the source voltage so as to switch it on. This strategy works well, provided the bridge is regularly switched and avoids the complexity of having to run a separate power supply and permits the more efficient n-channel devices to be used for both switches. This circuit (requiring the periodic switching of the high-side FET) may also be called a "bootstrap" circuit, and some would differentiate between that and a charge pump (which would not require that switching).
  • High-voltage vertical deflection signal generation for cathode-ray tube (CRT) monitors, done for example with the TDA1670A integrated circuit. To achieve maximum deviation, a CRT coil needs around 50 V. Using a charge pump voltage doubler from an existing 24 V supply eliminates the need for another supply voltage.
  • Higher-power fast charge solutions for mobile devices rely on a charge pump instead of a buck converter to reduce the voltage, as higher efficiency reduces heat generation. The Samsung A23, which takes an input current of 3 A, can charge its internal battery packs at 6 A thanks to a 2:1 current pump.[3] Oppo's 240 W SUPERVOOC goes further and uses three charge pumps in parallel (98% claimed efficiency[4]) to go from 24V/10A to 10V/24A, which is then taken by two parallel battery packs.[5]

See also

[edit]
  • Cockcroft–Walton generator
  • Voltage multiplier
  • Switched capacitor
  • Charge transfer switch
  • Voltage doubler

References

[edit]
  1. ^ Jenne, F. "Substrate Bias Circuit", US Patent 3794862A, Feb 26, 1974.
  2. ^ Kevin Horton. Colordreams Revision C. Last modified 2007-09-30. Accessed 2011-09-15.
  3. ^ Release, Press (25 July 2022). "Smartphones - 2:1 Charge Pump Direct Charger". Power Electronics News.
  4. ^ "OPPO 超级闪充四大技术全面突破,布局多终端、多场景闪充生态 | OPPO 官方网站". OPPO (in Chinese (China)).
  5. ^ K., Balakumar (1 March 2022). "Oppo claims new levels in fast charging through 240W SUPERVOOC - We explain it". TechRadar.

Applying the equivalent resistor concept to calculating the power losses in the charge pumps

  • Maxwell, J.C. (1873). "Intermittent current Art. 775, 776". A Treatise on Electricity and Magnetism. Oxford: The Clarendon Press. pp. 420–5.
  • Singer, Z.; Emanuel, A.; Erlicki, M. S. (February 1972). "Power regulation by means of a switched capacitor". Proceedings of the Institution of Electrical Engineers. 119 (2): 149–152. doi:10.1049/piee.1972.0027.
  • van Steenwijk, G.; Hoen, K.; Wallinga, H. (1993). "Analysis and design of a charge pump circuit for high output current applications". Proc. 19th European Solid-State Circuits Conference (ESSCIRC). Vol. 1. pp. 118–121.
  • Kimball, J.W.; Krein, P.T.; Cahill, K.R. (December 2005). "Modeling of capacitor impedance in switching converters". IEEE Power Electronics Letters. 3 (4): 136–140. Bibcode:2005IPEL....3..136K. doi:10.1109/LPEL.2005.863603. S2CID 27467492.
  • Kiyoo Itoh; Masashi Horiguchi; Hitoshi Tanaka (2007). Ultra-Low Voltage Nano-Scale Memories. Series on Integrated Circuits and Systems. Springer. ISBN 978-0-387-68853-4.
  • Seeman, M.D.; Sanders, S.R. (March 2008). "Analysis and Optimization of Switched-Capacitor DC–DC Converters". IEEE Transactions on Power Electronics. 23 (2): 841–851. Bibcode:2008ITPE...23..841S. doi:10.1109/TPEL.2007.915182. S2CID 7011962.
  • Ben-Yaakov, S.; Evzelman, M. (2009). "Generic and unified model of Switched Capacitor Converters". 2009 IEEE Energy Conversion Congress and Exposition. pp. 3501–8. doi:10.1109/ECCE.2009.5316060. ISBN 978-1-4244-2893-9. S2CID 9116733.
  • Ben-Yaakov, S. (January 2012). "On the Influence of Switch Resistances on Switched-Capacitor Converter Losses". IEEE Transactions on Industrial Electronics. 59 (1): 638–640. Bibcode:2012ITIE...59..638B. doi:10.1109/TIE.2011.2146219. S2CID 18901243.

Charge pumps where the voltages across the capacitors follow the binary number system

  • Ueno, F.; Inoue, T.; Oota, I. (1986). "Realization of a new switched-capacitor transformer with a step-up transformer ratio 2n–1 using n capacitors". IEEE International Symposium on Circuits and Systems (ISCAS). pp. 805–8.
  • Starzyk, J.A.; Ying-Wei Jan; Fengjing Qiu (March 2001). "A DC-DC charge pump design based on voltage doublers". IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications. 48 (3): 350–9. Bibcode:2001ITCSR..48..350S. doi:10.1109/81.915390.
  • Fang Lin Luo; Hong Ye (June 2004). "Positive output multiple-lift push-pull switched-capacitor Luo-converters". IEEE Transactions on Industrial Electronics. 51 (3): 594–602. Bibcode:2004ITIE...51..594L. doi:10.1109/TIE.2004.825344. S2CID 22202569.
  • Ben-Yaakov, S.; Kushnerov, A. (2009). "Algebraic foundation of self adjusting Switched Capacitors Converters". 2009 IEEE Energy Conversion Congress and Exposition. pp. 1582–9. doi:10.1109/ECCE.2009.5316143. ISBN 978-1-4244-2893-9. S2CID 12915415.
  • Allasasmeh, Y.; Gregori, S. (November 2018). "High-performance switched-capacitor boost-buck integrated power converters". IEEE Transactions on Circuits and Systems I: Regular Papers. 65 (11): 3970–3983. Bibcode:2018ITCSR..65.3970A. doi:10.1109/TCSI.2018.2863239. ISSN 1558-0806. S2CID 52932169.

External links

[edit]
This article's use of external links may not follow Wikipedia's policies or guidelines. Please improve this article by removing excessive or inappropriate external links, and converting useful links where appropriate into footnote references. (September 2018) (Learn how and when to remove this message)
  • Charge Pump, inductorless, Voltage Regulators
  • On-chip High-Voltage Generator Design
  • Charge Pump DC/DC Converters. Applications, circuits and solutions using inductorless (charge pump) dc/dc converters.
  • DC/DC Conversion without Inductors. General description of charge pump operation; example applications using Maxim controllers.
  • Charge Pump Circuits: An Overview on Design Strategies and Topologies Tutorial by G. Palumbo and D. Pappalardo
  • v
  • t
  • e
Electronic components
Semiconductor
devices
MOS
transistors
  • Transistor
  • NMOS
  • PMOS
  • BiCMOS
  • BioFET
  • Chemical field-effect transistor (ChemFET)
  • Complementary MOS (CMOS)
  • Depletion-load NMOS
  • Fin field-effect transistor (FinFET)
  • Floating-gate MOSFET (FGMOS)
  • Insulated-gate bipolar transistor (IGBT)
  • ISFET
  • LDMOS
  • MOS field-effect transistor (MOSFET)
  • Multi-gate field-effect transistor (MuGFET)
  • Power MOSFET
  • Thin-film transistor (TFT)
  • VMOS
  • UMOS
Other
transistors
  • Bipolar junction transistor (BJT)
  • Darlington transistor
  • Diffused junction transistor
  • Field-effect transistor (FET)
    • Junction Gate FET (JFET)
    • Organic FET (OFET)
  • Light-emitting transistor (LET)
    • Organic LET (OLET)
  • Pentode transistor
  • Point-contact transistor
  • Programmable unijunction transistor (PUT)
  • Static induction transistor (SIT)
  • Tetrode transistor
  • Unijunction transistor (UJT)
Diodes
  • Avalanche diode
  • Constant-current diode (CLD, CRD)
  • Gunn diode
  • Laser diode (LD)
  • Light-emitting diode (LED)
  • Organic light-emitting diode (OLED)
  • Photodiode
  • PIN diode
  • Schottky diode
  • Step recovery diode
  • Zener diode
Other
devices
  • Printed electronics
  • Printed circuit board
  • DIAC
  • Heterostructure barrier varactor
  • Integrated circuit (IC)
  • Hybrid integrated circuit
  • Light emitting capacitor (LEC)
  • Memistor
  • Memristor
  • Memtransistor
  • Memory cell
  • Metal-oxide varistor (MOV)
  • Mixed-signal integrated circuit
  • MOS integrated circuit (MOS IC)
  • Organic semiconductor
  • Photodetector
  • Quantum circuit
  • RF CMOS
  • Silicon controlled rectifier (SCR)
  • Solaristor
  • Static induction thyristor (SITh)
  • Three-dimensional integrated circuit (3D IC)
  • Thyristor
  • Trancitor
  • TRIAC
  • Varicap
Voltage regulators
  • Linear regulator
  • Low-dropout regulator
  • Switching regulator
  • Buck
  • Boost
  • Buck–boost
  • Split-pi
  • Ćuk
  • SEPIC
  • Charge pump
  • Switched capacitor
Vacuum tubes
  • Acorn tube
  • Audion
  • Beam tetrode
  • Barretter
  • Compactron
  • Diode
  • Fleming valve
  • Neutron tube
  • Nonode
  • Nuvistor
  • Pentagrid (Hexode, Heptode, Octode)
  • Pentode
  • Photomultiplier
  • Phototube
  • Tetrode
  • Triode
Vacuum tubes (RF)
  • Backward-wave oscillator (BWO)
  • Cavity magnetron
  • Crossed-field amplifier (CFA)
  • Gyrotron
  • Inductive output tube (IOT)
  • Klystron
  • Maser
  • Sutton tube
  • Traveling-wave tube (TWT)
  • X-ray tube
Cathode ray tubes
  • Beam deflection tube
  • Charactron
  • Iconoscope
  • Magic eye tube
  • Monoscope
  • Selectron tube
  • Storage tube
  • Trochotron
  • Video camera tube
  • Williams tube
Gas-filled tubes
  • Cold cathode
  • Crossatron
  • Dekatron
  • Ignitron
  • Krytron
  • Mercury-arc valve
  • Neon lamp
  • Nixie tube
  • Thyratron
  • Trigatron
  • Voltage-regulator tube
Adjustable
  • Potentiometer
    • digital
  • Variable capacitor
  • Varicap
Passive
  • Connector
    • audio and video
    • electrical power
    • RF
  • Electrolytic detector
  • Ferrite
  • Antifuse
  • Fuse
    • resettable
    • eFuse
  • Resistor
  • Switch
  • Thermistor
  • Transformer
  • Varistor
  • Wire
    • Wollaston wire
Reactive
  • Capacitor
    • types
  • Ceramic resonator
  • Crystal oscillator
  • Inductor
  • Parametron
  • Relay
    • reed relay
    • mercury relay
Other devices
  • Cam timer
Retrieved from "https://teknopedia.ac.id/w/index.php?title=Charge_pump&oldid=1307736918"
Categories:
  • Electric power conversion
  • Voltage regulation
Hidden categories:
  • CS1 Chinese (China)-language sources (zh-cn)
  • Articles with short description
  • Short description matches Wikidata
  • Articles lacking in-text citations from November 2015
  • All articles lacking in-text citations
  • Articles containing potentially dated statements from 2007
  • All articles containing potentially dated statements
  • Wikipedia external links cleanup from September 2018

  • indonesia
  • Polski
  • العربية
  • Deutsch
  • English
  • Español
  • Français
  • Italiano
  • مصرى
  • Nederlands
  • 日本語
  • Português
  • Sinugboanong Binisaya
  • Svenska
  • Українська
  • Tiếng Việt
  • Winaray
  • 中文
  • Русский
Sunting pranala
url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url
Pusat Layanan

UNIVERSITAS TEKNOKRAT INDONESIA | ASEAN's Best Private University
Jl. ZA. Pagar Alam No.9 -11, Labuhan Ratu, Kec. Kedaton, Kota Bandar Lampung, Lampung 35132
Phone: (0721) 702022
Email: pmb@teknokrat.ac.id