Epstein Files Full PDF

CLICK HERE
Technopedia Center
PMB University Brochure
Faculty of Engineering and Computer Science
S1 Informatics S1 Information Systems S1 Information Technology S1 Computer Engineering S1 Electrical Engineering S1 Civil Engineering

faculty of Economics and Business
S1 Management S1 Accountancy

Faculty of Letters and Educational Sciences
S1 English literature S1 English language education S1 Mathematics education S1 Sports Education
teknopedia

  • Registerasi
  • Brosur UTI
  • Kip Scholarship Information
  • Performance
Flag Counter
  1. World Encyclopedia
  2. Context-sensitive language - Wikipedia
Context-sensitive language - Wikipedia
From Wikipedia, the free encyclopedia
(Redirected from Context-sensitive languages)
Language defined by context-sensitive grammar
"Context-dependent" redirects here. For the type of memory, see Context-dependent memory.

In formal language theory, a context-sensitive language is a formal language that can be defined by a context-sensitive grammar, where the applicability of a production rule may depend on the surrounding context of symbols. Unlike context-free grammars, which can apply rules regardless of context, context-sensitive grammars allow rules to be applied only when specific neighboring symbols are present, enabling them to express dependencies and agreements between distant parts of a string.

These languages correspond to type-1 languages in the Chomsky hierarchy and are equivalently defined by noncontracting grammars (grammars where production rules never decrease the total length of a string). Context-sensitive languages can model natural language phenomena such as subject-verb agreement, cross-serial dependencies, and other complex syntactic relationships that cannot be captured by simpler grammar types,[citation needed] making them important for computational linguistics and natural language processing.

Computational properties

[edit]

Computationally, a context-sensitive language is equivalent to a linear bounded nondeterministic Turing machine, also called a linear bounded automaton. That is a non-deterministic Turing machine with a tape of only k n {\displaystyle kn} {\displaystyle kn} cells, where n {\displaystyle n} {\displaystyle n} is the size of the input and k {\displaystyle k} {\displaystyle k} is a constant associated with the machine. This means that every formal language that can be decided by such a machine is a context-sensitive language, and every context-sensitive language can be decided by such a machine.

This set of languages is also known as NLINSPACE or NSPACE(O(n)), because they can be accepted using linear space on a non-deterministic Turing machine.[1] The class LINSPACE (or DSPACE(O(n))) is defined the same, except using a deterministic Turing machine. Clearly LINSPACE is a subset of NLINSPACE, but it is not known whether LINSPACE = NLINSPACE.[2]

Examples

[edit]

One of the simplest context-sensitive but not context-free languages is L = { a n b n c n : n ≥ 1 } {\displaystyle L=\{a^{n}b^{n}c^{n}:n\geq 1\}} {\displaystyle L=\{a^{n}b^{n}c^{n}:n\geq 1\}}: the language of all strings consisting of n occurrences of the symbol "a", then n "b"s, then n "c"s (abc, aabbcc, aaabbbccc, etc.). A superset of this language, called the Bach language,[3] is defined as the set of all strings where "a", "b" and "c" (or any other set of three symbols) occurs equally often (aabccb, baabcaccb, etc.) and is also context-sensitive.[4][5]

L can be shown to be a context-sensitive language by constructing a linear bounded automaton which accepts L. The language can easily be shown to be neither regular nor context-free by applying the respective pumping lemmas for each of the language classes to L.

Similarly:

L Cross = { a m b n c m d n : m ≥ 1 , n ≥ 1 } {\displaystyle L_{\textit {Cross}}=\{a^{m}b^{n}c^{m}d^{n}:m\geq 1,n\geq 1\}} {\displaystyle L_{\textit {Cross}}=\{a^{m}b^{n}c^{m}d^{n}:m\geq 1,n\geq 1\}} is another context-sensitive language; the corresponding context-sensitive grammar can be easily projected starting with two context-free grammars generating sentential forms in the formats a m C m {\displaystyle a^{m}C^{m}} {\displaystyle a^{m}C^{m}} and B n d n {\displaystyle B^{n}d^{n}} {\displaystyle B^{n}d^{n}} and then supplementing them with a permutation production like C B → B C {\displaystyle CB\rightarrow BC} {\displaystyle CB\rightarrow BC}, a new starting symbol and standard syntactic sugar.

L M U L 3 = { a m b n c m n : m ≥ 1 , n ≥ 1 } {\displaystyle L_{MUL3}=\{a^{m}b^{n}c^{mn}:m\geq 1,n\geq 1\}} {\displaystyle L_{MUL3}=\{a^{m}b^{n}c^{mn}:m\geq 1,n\geq 1\}} is another context-sensitive language (the "3" in the name of this language is intended to mean a ternary alphabet); that is, the "product" operation defines a context-sensitive language (but the "sum" defines only a context-free language as the grammar S → a S c | R {\displaystyle S\rightarrow aSc|R} {\displaystyle S\rightarrow aSc|R} and R → b R c | b c {\displaystyle R\rightarrow bRc|bc} {\displaystyle R\rightarrow bRc|bc} shows). Because of the commutative property of the product, the most intuitive grammar for L MUL3 {\displaystyle L_{\textit {MUL3}}} {\displaystyle L_{\textit {MUL3}}} is ambiguous. This problem can be avoided considering a somehow more restrictive definition of the language, e.g. L ORDMUL3 = { a m b n c m n : 1 < m < n } {\displaystyle L_{\textit {ORDMUL3}}=\{a^{m}b^{n}c^{mn}:1<m<n\}} {\displaystyle L_{\textit {ORDMUL3}}=\{a^{m}b^{n}c^{mn}:1<m<n\}}. This can be specialized to L MUL1 = { a m n : m > 1 , n > 1 } {\displaystyle L_{\textit {MUL1}}=\{a^{mn}:m>1,n>1\}} {\displaystyle L_{\textit {MUL1}}=\{a^{mn}:m>1,n>1\}} and, from this, to L m 2 = { a m 2 : m > 1 } {\displaystyle L_{m^{2}}=\{a^{m^{2}}:m>1\}} {\displaystyle L_{m^{2}}=\{a^{m^{2}}:m>1\}}, L m 3 = { a m 3 : m > 1 } {\displaystyle L_{m^{3}}=\{a^{m^{3}}:m>1\}} {\displaystyle L_{m^{3}}=\{a^{m^{3}}:m>1\}}, etc.

L R E P = { w | w | : w ∈ Σ ∗ } {\displaystyle L_{REP}=\{w^{|w|}:w\in \Sigma ^{*}\}} {\displaystyle L_{REP}=\{w^{|w|}:w\in \Sigma ^{*}\}} is a context-sensitive language. The corresponding context-sensitive grammar can be obtained as a generalization of the context-sensitive grammars for L Square = { w 2 : w ∈ Σ ∗ } {\displaystyle L_{\textit {Square}}=\{w^{2}:w\in \Sigma ^{*}\}} {\displaystyle L_{\textit {Square}}=\{w^{2}:w\in \Sigma ^{*}\}}, L Cube = { w 3 : w ∈ Σ ∗ } {\displaystyle L_{\textit {Cube}}=\{w^{3}:w\in \Sigma ^{*}\}} {\displaystyle L_{\textit {Cube}}=\{w^{3}:w\in \Sigma ^{*}\}}, etc.

L EXP = { a 2 n : n ≥ 1 } {\displaystyle L_{\textit {EXP}}=\{a^{2^{n}}:n\geq 1\}} {\displaystyle L_{\textit {EXP}}=\{a^{2^{n}}:n\geq 1\}} is a context-sensitive language.[6]

L PRIMES2 = { w : | w |  is prime  } {\displaystyle L_{\textit {PRIMES2}}=\{w:|w|{\mbox{ is prime }}\}} {\displaystyle L_{\textit {PRIMES2}}=\{w:|w|{\mbox{ is prime }}\}} is a context-sensitive language (the "2" in the name of this language is intended to mean a binary alphabet). This was proved by Hartmanis using pumping lemmas for regular and context-free languages over a binary alphabet and, after that, sketching a linear bounded multitape automaton accepting L P R I M E S 2 {\displaystyle L_{PRIMES2}} {\displaystyle L_{PRIMES2}}.[7]

L PRIMES1 = { a p : p  is prime  } {\displaystyle L_{\textit {PRIMES1}}=\{a^{p}:p{\mbox{ is prime }}\}} {\displaystyle L_{\textit {PRIMES1}}=\{a^{p}:p{\mbox{ is prime }}\}} is a context-sensitive language (the "1" in the name of this language is intended to mean a unary alphabet). This was credited by A. Salomaa to Matti Soittola by means of a linear bounded automaton over a unary alphabet[8] (pages 213–214, exercise 6.8) and also to Marti Penttonen by means of a context-sensitive grammar also over a unary alphabet (See: Formal Languages by A. Salomaa, page 14, Example 2.5).

An example of recursive language that is not context-sensitive is any recursive language whose decision is an EXPSPACE-hard problem, say, the set of pairs of equivalent regular expressions with exponentiation.

Properties of context-sensitive languages

[edit]
  • The union, intersection, concatenation of two context-sensitive languages is context-sensitive, also the Kleene plus of a context-sensitive language is context-sensitive.[9]
  • The complement of a context-sensitive language is itself context-sensitive[10] a result known as the Immerman–Szelepcsényi theorem.
  • Membership of a string in a language defined by an arbitrary context-sensitive grammar, or by an arbitrary deterministic context-sensitive grammar, is a PSPACE-complete problem.

See also

[edit]
  • List of parser generators for context-sensitive languages
  • Indexed languages – a strict subset of the context-sensitive languages
  • Weir hierarchy
  • Mildly context-sensitive grammar formalism – a collection of formalisms for various subclasses of context-sensitive languages

References

[edit]
  1. ^ Rothe, Jörg (2005), Complexity theory and cryptology, Texts in Theoretical Computer Science. An EATCS Series, Berlin: Springer-Verlag, p. 77, ISBN 978-3-540-22147-0, MR 2164257.
  2. ^ Odifreddi, P. G. (1999), Classical recursion theory. Vol. II, Studies in Logic and the Foundations of Mathematics, vol. 143, Amsterdam: North-Holland Publishing Co., p. 236, ISBN 978-0-444-50205-6, MR 1718169.
  3. ^ Pullum, Geoffrey K. (1983). Context-freeness and the computer processing of human languages. Proc. 21st Annual Meeting of the ACL.
  4. ^ Bach, E. (1981). "Discontinuous constituents in generalized categorial grammars" Archived 2014-01-21 at the Wayback Machine. NELS, vol. 11, pp. 1–12.
  5. ^ Joshi, A.; Vijay-Shanker, K.; and Weir, D. (1991). "The convergence of mildly context-sensitive grammar formalisms". In: Sells, P., Shieber, S.M. and Wasow, T. (Editors). Foundational Issues in Natural Language Processing. Cambridge MA: Bradford.
  6. ^ Example 9.5 (p. 224) of Hopcroft, John E.; Ullman, Jeffrey D. (1979). Introduction to Automata Theory, Languages, and Computation. Addison-Wesley
  7. ^ J. Hartmanis and H. Shank (Jul 1968). "On the Recognition of Primes by Automata" (PDF). Journal of the ACM. 15 (3): 382–389. doi:10.1145/321466.321470. hdl:1813/5864. S2CID 17998039.
  8. ^ Salomaa, Arto (1969), Theory of Automata, ISBN 978-0-08-013376-8, Pergamon, 276 pages. doi:10.1016/C2013-0-02221-9
  9. ^ John E. Hopcroft; Jeffrey D. Ullman (1979). Introduction to Automata Theory, Languages, and Computation. Addison-Wesley. ISBN 9780201029888.; Exercise 9.10, p.230. In the 2000 edition, the chapter on context-sensitive languages has been omitted.
  10. ^ Immerman, Neil (1988). "Nondeterministic space is closed under complementation" (PDF). SIAM J. Comput. 17 (5): 935–938. CiteSeerX 10.1.1.54.5941. doi:10.1137/0217058. Archived (PDF) from the original on 2004-06-25.
  • Sipser, M. (1996), Introduction to the Theory of Computation, PWS Publishing Co.
  • v
  • t
  • e
Automata theory: formal languages and formal grammars
Chomsky hierarchyGrammarsLanguagesAbstract machines
  • Type-0
  • —
  • Type-1
  • —
  • —
  • —
  • —
  • —
  • Type-2
  • —
  • —
  • Type-3
  • —
  • —
  • Unrestricted
  • (no common name)
  • Context-sensitive
  • Positive range concatenation
  • Indexed
  • —
  • Linear context-free rewriting systems
  • Tree-adjoining
  • Context-free
  • Deterministic context-free
  • Visibly pushdown
  • Regular
  • —
  • Non-recursive
  • Recursively enumerable
  • Decidable
  • Context-sensitive
  • Positive range concatenation*
  • Indexed*
  • —
  • Linear context-free rewriting language
  • Tree-adjoining
  • Context-free
  • Deterministic context-free
  • Visibly pushdown
  • Regular
  • Star-free
  • Finite
  • Turing machine
  • Decider
  • Linear-bounded
  • PTIME Turing Machine
  • Nested stack
  • Thread automaton
  • restricted Tree stack automaton
  • Embedded pushdown
  • Nondeterministic pushdown
  • Deterministic pushdown
  • Visibly pushdown
  • Finite
  • Counter-free (with aperiodic finite monoid)
  • Acyclic finite
Each category of languages, except those marked by a *, is a proper subset of the category directly above it. Any language in each category is generated by a grammar and by an automaton in the category in the same line.
Retrieved from "https://teknopedia.ac.id/w/index.php?title=Context-sensitive_language&oldid=1320713219"
Category:
  • Formal languages
Hidden categories:
  • Webarchive template wayback links
  • Articles with short description
  • Short description is different from Wikidata
  • All articles with unsourced statements
  • Articles with unsourced statements from July 2025

  • indonesia
  • Polski
  • العربية
  • Deutsch
  • English
  • Español
  • Français
  • Italiano
  • مصرى
  • Nederlands
  • 日本語
  • Português
  • Sinugboanong Binisaya
  • Svenska
  • Українська
  • Tiếng Việt
  • Winaray
  • 中文
  • Русский
Sunting pranala
url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url
Pusat Layanan

UNIVERSITAS TEKNOKRAT INDONESIA | ASEAN's Best Private University
Jl. ZA. Pagar Alam No.9 -11, Labuhan Ratu, Kec. Kedaton, Kota Bandar Lampung, Lampung 35132
Phone: (0721) 702022
Email: pmb@teknokrat.ac.id