The environmental impacts of artificial intelligence (AI) may vary significantly. Many deep learning methods have significant carbon footprints and water usage.[1] Some scientists have suggested that artificial intelligence may provide solutions to environmental problems.
Carbon footprint
AI has a significant carbon footprint due to growing energy usage, especially due to training and usage.[2][3] Researchers have argued that the carbon footprint of AI models during training should be considered when attempting to understand the impact of AI.[4] One study suggested that by 2027, energy costs for AI could increase to 85–134 Twh, nearly 0.5% of all current energy usage.[5][1] Training one deep learning model may use up to the same carbon footprint as the lifetime emissions of 5 cars.[2] Training large language models (LLMs) and other generative AI generally requires much more energy compared to running a single prediction on the trained model.[6] Using a trained model repeatedly, though, may easily multiply the energy costs of predictions.[6] The computation required to train the most advanced AI models doubles every 3.4 months on average, leading to exponential power usage and resulting carbon footprint.[7] Additionally, artificial intelligence algorithms running in places predominately using fossil fuels for energy will exert a much higher carbon footprint than places with cleaner energy sources[8]. These models may be modified for less environmental impacts at the cost of accuracy, emphasizing the importance of finding the balance between accuracy and environmental impact.
BERT, a generative AI model trained in 2019, consumed "the energy of a round-trip transcontinental flight."[9] GPT-3 released 552 metric tons of carbon dioxide into the atmosphere during training, "the equivalent of 123 gasoline-powered passenger vehicles driven for one year".[9][10][11] Much of the energy cost is due to inefficient model architectures and processors.[9] One model named BLOOM, from Hugging Face, trained with more efficient chips and, therefore, only released 25 metric tons of CO2.[10] Incorporating the energy cost of manufacturing the chips for the system doubled the carbon footprint, to "the equivalent of around 60 flights between London and New York."[10] Operating BLOOM daily was estimated to release the equivalent carbon footprint as driving 54 miles.[10]
Algorithms which have lower energy costs but run millions of times a day can also have significant carbon footprints.[10] The integration of AI into search engines could multiply energy costs significantly,[9][12] with some estimates suggesting energy costs rising to nearly 30 billion kWh per year, an energy footprint larger than many countries.[13] Another estimate found that integrating ChatGPT into every Google search query would use 10 tWh each year, the equivalent yearly energy usage of 1.5 million European Union residents.[12]
Increased computational demands from AI caused both increased water and energy usage, leading to significantly more demands on the grid.[14] Due to increased energy demands from AI-related projects, coal-fired plants in Kansas City[15] and West Virginia[1] pushed back closing. Other coal-fired plants in the Salt Lake City region have pushed back retirement of their coal-fired plants by up to a decade.[16] Environmental debates have raged in both Virginia and France about whether a "moratorium" should be called for additional data centers.[15] In 2024 at the World Economic Forum, OpenAI executive Sam Altman gave a speech in which he said that the AI industry can only grow if there is a major technology breakthrough to increase energy development.[17][18][19]
In 2024, Google failed to reach key goals from their net zero plan as a result of their work with AI,[20][21] and had a 48% increase in greenhouse gas emission attributable to their growth in AI.[14][1] Microsoft and Meta had similar increases in their carbon footprint, similarly attributed to AI.[1] Carbon footprints of AI models depends on the energy source used, with data centers using renewable energy lowering their footprint.[7] Many tech companies claim to offset energy usage by buying energy from renewable sources, though some experts argue that utilities simply replace the claimed renewable energy with increased non-renewable sources for their other customers.[16] Analysis of the carbon footprint of AI models remains difficult to determine, as they are aggregated as part of datacenter carbon footprints, and some models may help reduce carbon footprints of other industries,[22] or due to differences in reporting from companies.[23]
Some applications of ML, such as for fossil fuel discovery and exploration, may worsen climate change.[4][11] Use of AI for personalized marketing online may also lead to increased consumption of goods, which could also increase global emissions.[11]
Energy use and efficiency
AI chips, (i.e. GPUs) use more energy and emit more heat than traditional CPU chips.[1] AI models with inefficiently implemented architectures, or trained on less efficient chips may use more energy.[9] Since the 1940's the energy efficiency of computation has doubled every 1.6 years.[24] Some skeptics argue that improvements of AI efficiency may only increase AI usage and therefore carbon footprint due to Jevons paradox.[22]
In September 2024, Microsoft announced an agreement with Constellation Energy to re-open the Three Mile Island nuclear power plant to provide Microsoft with 100% of all electric power produced by the plant for 20 years. Reopening the plant, which suffered a partial nuclear meltdown of its Unit 2 reactor in 1979, will require Constellation to get through strict regulatory processes which will include extensive safety scrutiny from the US Nuclear Regulatory Commission. If approved (this will be the first ever US re-commissioning of a nuclear plant), over 835 megawatts of power – enough for 800,000 homes – of energy will be produced. The cost for re-opening and upgrading is estimated at $1.6 billion (US) and is dependent on tax breaks for nuclear power contained in the 2022 US Inflation Reduction Act.[25]The US government and the state of Michigan are investing almost $2 billion (US) to reopen the Palisades Nuclear Reactor on Lake Michigan. Closed since 2022, the plant is planned to be reopened in October 2025. The Three Mile Island facility will be renamed the Crane Clean Energy Center after Chris Crane, a nuclear proponent and former CEO of Exelon who was responsible for Exelon spinoff of Constellation.[26]
Water usage
Cooling AI servers can demand large amounts of fresh water which is evaporated in cooling towers.[22][23] In fact, data centers housing AI are globally expected to consume six times more water than the country of Denmark[27]. By 2027, AI may use up to 6.6 billion cubic meters of water.[28] One professor has estimated that an average session on ChatGPT, with 10–50 responses, can use up to a half-liter of fresh water.[22][29][30] Training GPT-3 may have used 700,000 liters of water, equivalent to the water footprint of manufacturing 320 Tesla EVs.[29]
One data center that Microsoft had considered building near Phoenix, due to increasing AI usage, was likely to consume up to 56 million gallons of fresh water each year, equivalent to the water footprints of 670 families.[28] Microsoft may have increased water consumption by 34% due to AI, while Google increased its water usage by 20% due to AI.[30][7] Due to their Iowa data center cluster, Microsoft was responsible for 6% of the freshwater use in a local town.[30]
E-waste
E-waste due to production of AI hardware may also contribute to emissions.[7] The rapid growth of AI may also lead to faster deprecation of devices, resulting in hazardous e-waste.[31] Some applications of AI, such as for robot recycling, may reduce e-waste.[32][33]
Climate solutions
AI has significant potential to help mitigate effects of climate change, such as through better weather predictions, disaster prevention and weather tracking.[34][35] Some climate scientists have suggested that AI could be used to improve efficiencies of systems, such as renewable-energy systems.[13] Google has claimed AI could help mitigate some effects of climate change such as predicting floods or making traffic more efficient.[21] Some algorithms may help predict the impacts of more severe hurricanes, measure the melting of polar ice, deforestation, and help monitor emissions from sources.[11][35] One machine learning project, the Open Catalyst project, has been used to identify "suitable low-cost electrocatalysts" for battery storage of renewable energy sources.[4] AI may also improve the efficiencies of supply chains and productions for environmentally detrimental industries such as food and fast fashion.[34]
See also
References
- ^ a b c d e f Gelles, David (11 July 2024). "A.I.'s Insatiable Appetite for Energy". The New York Times. ISSN 0362-4331. Retrieved 15 July 2024.
- ^ a b Toews, Rob. "Deep Learning's Carbon Emissions Problem". Forbes. Archived from the original on 14 June 2024. Retrieved 4 July 2024.
- ^ Heikkilä, Melissa (5 December 2023). "AI's carbon footprint is bigger than you think". MIT Technology Review. Archived from the original on 5 July 2024. Retrieved 4 July 2024.
- ^ a b c "Achieving net zero emissions with machine learning: the challenge ahead". Nature Machine Intelligence. 4 (8): 661–662. 30 August 2022. doi:10.1038/s42256-022-00529-w. ISSN 2522-5839. Archived from the original on 22 April 2024. Retrieved 4 July 2024.
- ^ Erdenesanaa, Delger (10 October 2023). "A.I. Could Soon Need as Much Electricity as an Entire Country". The New York Times. ISSN 0362-4331. Archived from the original on 26 June 2024. Retrieved 3 July 2024.
- ^ a b Desislavov, Radosvet; Martínez-Plumed, Fernando; Hernández-Orallo, José (1 April 2023). "Trends in AI inference energy consumption: Beyond the performance-vs-parameter laws of deep learning". Sustainable Computing: Informatics and Systems. 38: 100857. arXiv:2109.05472. Bibcode:2023SCIS...3800857D. doi:10.1016/j.suscom.2023.100857. ISSN 2210-5379. Archived from the original on 6 July 2024. Retrieved 3 July 2024.
- ^ a b c d Sundberg, Niklas (12 December 2023). "Tackling AI's Climate Change Problem". MIT Sloan Management Review. Archived from the original on 27 June 2024. Retrieved 4 July 2024.
- ^ Schmitt, Marc (25 June 2024). "Sustainable Machine Learning: Evaluating the Environmental Cost of AutoML Algorithms in AI Development". IEEE: 1371–1372. doi:10.1109/CAI59869.2024.00244. ISBN 979-8-3503-5409-6.
{{cite journal}}
: Cite journal requires|journal=
(help) - ^ a b c d e Saenko, Kate (25 May 2023). "A Computer Scientist Breaks Down Generative AI's Hefty Carbon Footprint". Scientific American. Archived from the original on 6 July 2024. Retrieved 3 July 2024.
- ^ a b c d e Heikkiläarchive, Melissa (14 November 2022). "We're getting a better idea of AI's true carbon footprint". MIT Technology Review. Archived from the original on 3 July 2024. Retrieved 3 July 2024.
- ^ a b c d Coleman, Jude. "AI's Climate Impact Goes beyond Its Emissions". Scientific American. Archived from the original on 27 June 2024. Retrieved 3 July 2024.
- ^ a b Calvert, Brian (28 March 2024). "AI already uses as much energy as a small country. It's only the beginning". Vox. Archived from the original on 3 July 2024. Retrieved 3 July 2024.
- ^ a b Kolbert, Elizabeth (9 March 2024). "The Obscene Energy Demands of A.I." The New Yorker. ISSN 0028-792X. Archived from the original on 3 July 2024. Retrieved 3 July 2024.
- ^ a b Rahman-Jones, Imran (3 July 2024). "AI means Google's greenhouse gas emissions up 48% in 5 years". bbc.com. Archived from the original on 4 July 2024. Retrieved 4 July 2024.
- ^ a b Piquard, Alexandre (10 February 2024). "'The explosion in AI-related electricity demand has already had local consequences'". Le Monde.fr. Archived from the original on 30 June 2024. Retrieved 3 July 2024.
- ^ a b "AI is exhausting the power grid. Tech firms are seeking a miracle solution". Washington Post. 21 June 2024. Archived from the original on 25 June 2024. Retrieved 3 July 2024.
- ^ Crawford, Kate (22 February 2024). "Generative AI's environmental costs are soaring — and mostly secret". Nature. 626 (8000): 693. Bibcode:2024Natur.626..693C. doi:10.1038/d41586-024-00478-x. PMID 38378831.
- ^ Gizmodo, Lucas Ropek / (18 January 2024). "Sam Altman on AI's power, its impact on jobs, and the 2024 election". Quartz. Archived from the original on 29 April 2024. Retrieved 10 July 2024.
- ^ Benioff, Marc; Sweet, Julie; Hunt, Jeremy; Bourla, Albert; Altman, Sam; Zakaria, Fareed (18 January 2024). "Technology in a Turbulent World". World Economic Forum. Archived from the original on 29 March 2024. Retrieved 10 July 2024.
- ^ St. John, Alexa (2 July 2024). "Google falling short of important climate target, cites electricity needs of AI". ABC News. Archived from the original on 2 July 2024. Retrieved 3 July 2024.
- ^ a b "Google blames AI as its emissions grow instead of heading to net zero". Al Jazeera. Archived from the original on 3 July 2024. Retrieved 3 July 2024.
- ^ a b c d Berreby, David (20 February 2024). "The Growing Environmental Footprint Of Generative AI". Undark Magazine. Archived from the original on 15 April 2024. Retrieved 4 July 2024.
- ^ a b Berreby, David (6 February 2024). "As Use of A.I. Soars, So Does the Energy and Water It Requires". Yale E360. Archived from the original on 1 July 2024. Retrieved 4 July 2024.
- ^ McClurg, Lesley (11 July 2024). "What Is The Carbon Cost of Our Digital Lives?". KQED (Podcast).
- ^ Halper, Evan (20 September 2024). "Microsoft deal would reopen Three Mile Island nuclear plant to power AI". Washington Post.
- ^ Hiller, Jennifer (20 September 2024). "Three Mile Island's Nuclear Plant to Reopen, Help Power Microsoft's AI Centers". Wall Street Journal. Dow Jones.
- ^ Li, Pengfei; Yang, Jianyi; Islam, Mohammad A.; Ren, Shaolei (29 October 2023), Making AI Less "Thirsty": Uncovering and Addressing the Secret Water Footprint of AI Models, doi:10.48550/arXiv.2304.03271, retrieved 5 December 2024
- ^ a b Hao, Karen (1 March 2024). "AI Is Taking Water From the Desert". The Atlantic. Archived from the original on 6 July 2024. Retrieved 4 July 2024.
- ^ a b Danelski, David (28 April 2023). "AI programs consume large volumes of scarce water | UCR News | UC Riverside". news.ucr.edu. Archived from the original on 3 July 2024. Retrieved 4 July 2024.
- ^ a b c O'Brien, Matt; Fingerhut, Hannah (9 September 2023). "A.I. tools fueled a 34% spike in Microsoft's water consumption, and one city with its data centers is concerned about the effect on residential supply". Fortune. Archived from the original on 8 February 2024. Retrieved 4 July 2024.
- ^ Zhuk, A. (15 December 2023). "Artificial Intelligence Impact on the Environment: Hidden Ecological Costs and Ethical-Legal Issues". Journal of Digital Technologies and Law. 1 (4): 932–954. doi:10.21202/jdtl.2023.40. hdl:10230/59428. ISSN 2949-2483. Archived from the original on 6 July 2024. Retrieved 4 July 2024.
- ^ Stone, Maddie (3 February 2022). "Can AI-powered robots solve the smartphone e-waste crisis?". The Verge. Archived from the original on 17 December 2023. Retrieved 4 July 2024.
- ^ Shreyas Madhav, AV; Rajaraman, Raghav; Harini, S; Kiliroor, Cinu C (July 2022). "Application of artificial intelligence to enhance collection of E-waste: A potential solution for household WEEE collection and segregation in India". Waste Management & Research. 40 (7): 1047–1053. Bibcode:2022WMR....40.1047S. doi:10.1177/0734242X211052846. ISSN 0734-242X. PMC 9109239. PMID 34726090.
- ^ a b "Explainer: How AI helps combat climate change | UN News". news.un.org. 3 November 2023. Archived from the original on 10 June 2024. Retrieved 6 July 2024.
- ^ a b Masterson, Victoria (12 February 2024). "9 ways AI is helping tackle climate change". World Economic Forum.