Unsolved problem in number theory
Unsolved problem in mathematics :
Does the Erdős–Moser equation have solutions other than 11 +21 =31 ?
In number theory , the Erdős–Moser equation is
1
k
+
2
k
+
⋯
+
(
m
−
1
)
k
=
m
k
,
{\displaystyle 1^{k}+2^{k}+\cdots +(m-1)^{k}=m^{k},}
where m and k are restricted to the positive integers —that is, it is considered as a Diophantine equation . The only known solution is 11 + 21 = 31 , and Paul Erdős conjectured that no further solutions exist. Any further solutions must have m > 10109 .[ 1]
Throughout this article, p refers exclusively to prime numbers .
Constraints on solutions [ edit ]
In 1953, Leo Moser proved that, in any further solutions,[ 2]
k is even,
p | (m − 1) implies (p − 1) | k ,
p | (m + 1) implies (p − 1) | k ,
p | (2m + 1) implies (p − 1) | k ,
m − 1 is squarefree ,
m + 1 is either squarefree or 4 times an odd squarefree number,
2m − 1 is squarefree,
2m + 1 is squarefree,
∑
p
|
(
m
−
1
)
m
−
1
p
≡
−
1
(
mod
m
−
1
)
,
{\displaystyle \sum _{p|(m-1)}{\frac {m-1}{p}}\equiv -1{\pmod {m-1}},}
∑
p
|
(
m
+
1
)
m
+
1
p
≡
−
2
(
mod
m
+
1
)
(if
m
+
1
is even)
,
{\displaystyle \sum _{p|(m+1)}{\frac {m+1}{p}}\equiv -2{\pmod {m+1}}\quad {\text{(if }}m+1{\text{ is even)}},}
∑
p
|
(
2
m
−
1
)
2
m
−
1
p
≡
−
2
(
mod
2
m
−
1
)
,
{\displaystyle \sum _{p|(2m-1)}{\frac {2m-1}{p}}\equiv -2{\pmod {2m-1}},}
∑
p
|
(
2
m
+
1
)
2
m
+
1
p
≡
−
4
(
mod
2
m
+
1
)
,
{\displaystyle \sum _{p|(2m+1)}{\frac {2m+1}{p}}\equiv -4{\pmod {2m+1}},}
and
m > 10106 .
In 1966, it was additionally shown that[ 3]
6 ≤ k + 2 < m < 3 (k + 1) / 2 , and
m – 1 cannot be prime.
In 1994, it was shown that[ 4]
lcm(1,2,…,200) divides k ,
m ≡ 3 (mod 2ord2 (k ) + 3 ) , where ord2 (n ) is the 2-adic valuation of n ; equivalently, ord2 (m − 3) = ord2 (k ) + 3 ,
for any odd prime p divding m , we have k ≢ 0, 2 (mod p − 1) ,
any prime factor of m must be irregular and > 10000.
In 1999, Moser's method was refined to show that m > 1.485 × 109,321,155 .[ 5]
In 2002, it was shown[ 6] : §4 that k must be a multiple of 23 · 3# · 5# · 7# · 19# · 1000# , where the symbol # indicates the primorial ; that is, n # is the product of all prime numbers ≤ n . This number exceeds 5.7462 × 10427 .
In 2009, it was shown that 2k / (2m – 3) must be a convergent of ln(2) ; in what the authors of that paper call "one of very few instances where a large scale computation of a numerical constant has an application", it was then determined that m > 2.7139 × 101,667,658,416 .[ 1]
In 2010, it was shown that[ 7]
m ≡ 3 (mod 8) and m ≡ ±1 (mod 3) , and
(m 2 – 1) (4m 2 – 1) / 12 has at least 4,990,906 prime factors, none of which are repeated.
The number 4,990,906 arises from the fact that ∑ 4990905 n =1 1 / p n < 19 / 6 < ∑ 4990906 n =1 1 / p n , where p n is the n th prime number.
First, let p be a prime factor of m − 1 . Leo Moser showed[ 2] that this implies that p − 1 divides k and that
1
+
m
−
1
p
≡
0
(
mod
p
)
,
{\displaystyle 1+{\frac {m-1}{p}}\equiv 0{\pmod {p}},}
1
which upon multiplying by p yields
p
+
m
−
1
≡
0
(
mod
p
2
)
.
{\displaystyle p+m-1\equiv 0{\pmod {p^{2}}}.}
This in turn implies that m − 1 must be squarefree . Furthermore, since nontrivial solutions have m − 1 > 2 and since all squarefree numbers in this range must have at least one odd prime factor, the assumption that p − 1 divides k implies that k must be even.
One congruence of the form (1 ) exists for each prime factor p of m − 1 . Multiplying all of them together yields
∏
p
|
(
m
−
1
)
(
1
+
m
−
1
p
)
≡
0
(
mod
m
−
1
)
.
{\displaystyle \prod _{p|(m-1)}\left(1+{\frac {m-1}{p}}\right)\equiv 0{\pmod {m-1}}.}
Expanding out the product yields
1
+
∑
p
|
(
m
−
1
)
m
−
1
p
+
(
higher-order terms
)
≡
0
(
mod
m
−
1
)
,
{\displaystyle 1+\sum _{p|(m-1)}{\frac {m-1}{p}}+({\text{higher-order terms}})\equiv 0{\pmod {m-1}},}
where the higher-order terms are products of multiple factors of the form (m − 1) / p , with different values of p in each factor. These terms are all divisible by m − 1 , so they all drop out of the congruence, yielding
1
+
∑
p
|
(
m
−
1
)
m
−
1
p
≡
0
(
mod
m
−
1
)
.
{\displaystyle 1+\sum _{p|(m-1)}{\frac {m-1}{p}}\equiv 0{\pmod {m-1}}.}
Dividing out the modulus yields
1
m
−
1
+
∑
p
|
(
m
−
1
)
1
p
≡
0
(
mod
1
)
.
{\displaystyle {\frac {1}{m-1}}+\sum _{p|(m-1)}{\frac {1}{p}}\equiv 0{\pmod {1}}.}
2
Similar reasoning yields the congruences
2
m
+
1
+
∑
p
|
(
m
+
1
)
1
p
≡
0
(
mod
1
)
(if
m
+
1
is even)
,
{\displaystyle {\frac {2}{m+1}}+\sum _{p|(m+1)}{\frac {1}{p}}\equiv 0{\pmod {1}}\quad {\text{(if }}m+1{\text{ is even)}},}
3
2
2
m
−
1
+
∑
p
|
(
2
m
−
1
)
1
p
≡
0
(
mod
1
)
,
and
{\displaystyle {\frac {2}{2m-1}}+\sum _{p|(2m-1)}{\frac {1}{p}}\equiv 0{\pmod {1}},\quad {\text{and}}}
4
4
2
m
+
1
+
∑
p
|
(
2
m
+
1
)
1
p
≡
0
(
mod
1
)
.
{\displaystyle {\frac {4}{2m+1}}+\sum _{p|(2m+1)}{\frac {1}{p}}\equiv 0{\pmod {1}}.}
5
The congruences (2 ), (3 ), (4 ), and (5 ) are quite restrictive; for example, the only values of m < 1000 which satisfy (2 ) are 3, 7, and 43, and these are ruled out by (4 ).
We now split into two cases: either m + 1 is even, or it is odd.
In the case that m + 1 is even, adding the left-hand sides of the congruences (2 ), (3 ), (4 ), and (5 ) must yield an integer, and this integer must be at least 4. Furthermore, the Euclidean algorithm shows that no prime p > 3 can divide more than one of the numbers in the set {m − 1, m + 1, 2m − 1, 2m + 1} , and that 2 and 3 can divide at most two of these numbers. Letting M = (m − 1) (m + 1) (2m − 1) (2m + 1) , we then have
1
m
−
1
+
2
m
+
1
+
2
2
m
−
1
+
4
2
m
+
1
+
∑
p
|
M
1
p
≥
4
−
1
2
−
1
3
=
3.1666....
{\displaystyle {\frac {1}{m-1}}+{\frac {2}{m+1}}+{\frac {2}{2m-1}}+{\frac {4}{2m+1}}+\sum _{p|M}{\frac {1}{p}}\geq 4-{\frac {1}{2}}-{\frac {1}{3}}=3.1666....}
6
Since there are no nontrivial solutions with m < 1000 , the part of the LHS of (6 ) outside the sigma cannot exceed 0.006 ; we therefore have
∑
p
|
M
1
p
>
3.16.
{\displaystyle \sum _{p|M}{\frac {1}{p}}>3.16.}
Therefore, if
∑
p
≤
x
1
p
<
3.16
{\displaystyle \sum _{p\leq x}{\frac {1}{p}}<3.16}
, then
M
>
∏
p
≤
x
p
{\displaystyle M>\prod _{p\leq x}p}
. In Moser's original paper,[ 2] bounds on the prime-counting function are used to observe that
∑
p
≤
10
7
1
p
<
3.16.
{\displaystyle \sum _{p\leq 10^{7}}{\frac {1}{p}}<3.16.}
Therefore, M must exceed the product of the first 10,000,000 primes. This in turn implies that m > 10106 in this case.
In the case that m + 1 is odd, we cannot use (3 ), so instead of (6 ) we obtain
1
m
−
1
+
2
2
m
−
1
+
4
2
m
+
1
+
∑
p
|
N
1
p
≥
3
−
1
3
=
2.666...
,
{\displaystyle {\frac {1}{m-1}}+{\frac {2}{2m-1}}+{\frac {4}{2m+1}}+\sum _{p|N}{\frac {1}{p}}\geq 3-{\frac {1}{3}}=2.666...,}
where N = (m − 1) (2m − 1) (2m + 1) . On the surface, this appears to be a weaker condition than (6 ), but since m + 1 is odd, the prime 2 cannot appear on the greater side of this inequality, and it turns out to be a stronger restriction on m than the other case.
Therefore any nontrivial solutions have m > 10106 .
In 1999, this method was refined by using computers to replace the prime-counting estimates with exact computations; this yielded the bound m > 1.485 × 109,321,155 .[ 5] : Thm 2
Bounding the ratio m / (k + 1)[ edit ]
Let S k (m ) = 1k + 2k + ⋯ + (m – 1)k . Then the Erdős–Moser equation becomes S k (m ) = m k .
Method 1: Integral comparisons [ edit ]
By comparing the sum S k (m ) to definite integrals of the function x k , one can obtain the bounds 1 < m / (k + 1) < 3 .[ 1] : §1¶2
The sum S k (m ) = 1k + 2k + ⋯ + (m – 1)k is the upper Riemann sum corresponding to the integral
∫
0
m
−
1
x
k
d
x
{\textstyle \int _{0}^{m-1}x^{k}\,\mathrm {d} x}
in which the interval has been partitioned on the integer values of x , so we have
S
k
(
m
)
>
∫
0
m
−
1
x
k
d
x
.
{\displaystyle S_{k}(m)>\int _{0}^{m-1}x^{k}\;\mathrm {d} x.}
By hypothesis, S k (m ) = m k , so
m
k
>
(
m
−
1
)
k
+
1
k
+
1
,
{\displaystyle m^{k}>{\frac {(m-1)^{k+1}}{k+1}},}
which leads to
m
k
+
1
<
(
1
+
1
m
−
1
)
k
+
1
.
{\displaystyle {\frac {m}{k+1}}<\left(1+{\frac {1}{m-1}}\right)^{k+1}.}
7
Similarly, S k (m ) is the lower Riemann sum corresponding to the integral
∫
1
m
x
k
d
x
{\textstyle \int _{1}^{m}x^{k}\,\mathrm {d} x}
in which the interval has been partitioned on the integer values of x , so we have
S
k
(
m
)
≤
∫
1
m
x
k
d
x
.
{\displaystyle S_{k}(m)\leq \int _{1}^{m}x^{k}\;\mathrm {d} x.}
By hypothesis, S k (m ) = m k , so
m
k
≤
m
k
+
1
−
1
k
+
1
<
m
k
+
1
k
+
1
,
{\displaystyle m^{k}\leq {\frac {m^{k+1}-1}{k+1}}<{\frac {m^{k+1}}{k+1}},}
and so
k
+
1
<
m
.
{\displaystyle k+1<m.}
8
Applying this to (7 ) yields
m
k
+
1
<
(
1
+
1
m
−
1
)
m
=
(
1
+
1
m
−
1
)
m
−
1
⋅
(
m
m
−
1
)
<
e
⋅
m
m
−
1
.
{\displaystyle {\frac {m}{k+1}}<\left(1+{\frac {1}{m-1}}\right)^{m}=\left(1+{\frac {1}{m-1}}\right)^{m-1}\cdot \left({\frac {m}{m-1}}\right)<e\cdot {\frac {m}{m-1}}.}
Computation shows that there are no nontrivial solutions with m ≤ 10 , so we have
m
k
+
1
<
e
⋅
11
11
−
1
<
3.
{\displaystyle {\frac {m}{k+1}}<e\cdot {\frac {11}{11-1}}<3.}
Combining this with (8 ) yields 1 < m / (k + 1) < 3 , as desired.
Method 2: Algebraic manipulations [ edit ]
The upper bound m / (k + 1) < 3 can be reduced to m / (k + 1) < 3/2 using an algebraic method:[ 3] : Lemat 4
Let r be a positive integer. Then the binomial theorem yields
(
ℓ
+
1
)
r
+
1
=
∑
i
=
0
r
+
1
(
r
+
1
i
)
ℓ
r
+
1
−
i
.
{\displaystyle (\ell +1)^{r+1}=\sum _{i=0}^{r+1}{\binom {r+1}{i}}\ell ^{r+1-i}.}
Summing over ℓ yields
∑
ℓ
=
1
m
−
1
(
ℓ
+
1
)
r
+
1
=
∑
ℓ
=
1
m
−
1
(
∑
i
=
0
r
+
1
(
r
+
1
i
)
ℓ
r
+
1
−
i
)
.
{\displaystyle \sum _{\ell =1}^{m-1}(\ell +1)^{r+1}=\sum _{\ell =1}^{m-1}\left(\sum _{i=0}^{r+1}{\binom {r+1}{i}}\ell ^{r+1-i}\right).}
Reindexing on the left and rearranging on the right yields
∑
ℓ
=
2
m
ℓ
r
+
1
=
∑
i
=
0
r
+
1
(
r
+
1
i
)
∑
ℓ
=
1
m
−
1
ℓ
r
+
1
−
i
{\displaystyle \sum _{\ell =2}^{m}\ell ^{r+1}=\sum _{i=0}^{r+1}{\binom {r+1}{i}}\sum _{\ell =1}^{m-1}\ell ^{r+1-i}}
∑
ℓ
=
1
m
ℓ
r
+
1
=
1
+
∑
i
=
0
r
+
1
(
r
+
1
i
)
S
r
+
1
−
i
(
m
)
{\displaystyle \sum _{\ell =1}^{m}\ell ^{r+1}=1+\sum _{i=0}^{r+1}{\binom {r+1}{i}}S_{r+1-i}(m)}
S
r
+
1
(
m
+
1
)
−
S
r
+
1
(
m
)
=
1
+
(
r
+
1
)
S
r
(
m
)
+
∑
i
=
2
r
+
1
(
r
+
1
i
)
S
r
+
1
−
i
(
m
)
{\displaystyle S_{r+1}(m+1)-S_{r+1}(m)=1+(r+1)S_{r}(m)+\sum _{i=2}^{r+1}{\binom {r+1}{i}}S_{r+1-i}(m)}
m
r
+
1
=
1
+
(
r
+
1
)
S
r
(
m
)
+
∑
i
=
2
r
+
1
(
r
+
1
i
)
S
r
+
1
−
i
(
m
)
.
{\displaystyle m^{r+1}=1+(r+1)S_{r}(m)+\sum _{i=2}^{r+1}{\binom {r+1}{i}}S_{r+1-i}(m).}
9
Taking r = k yields
m
k
+
1
=
1
+
(
k
+
1
)
S
k
(
m
)
+
∑
i
=
2
k
+
1
(
k
+
1
i
)
S
k
+
1
−
i
(
m
)
.
{\displaystyle m^{k+1}=1+(k+1)S_{k}(m)+\sum _{i=2}^{k+1}{\binom {k+1}{i}}S_{k+1-i}(m).}
By hypothesis, S k = m k , so
m
k
+
1
=
1
+
(
k
+
1
)
m
k
+
∑
i
=
2
k
+
1
(
k
+
1
i
)
S
k
+
1
−
i
(
m
)
{\displaystyle m^{k+1}=1+(k+1)m^{k}+\sum _{i=2}^{k+1}{\binom {k+1}{i}}S_{k+1-i}(m)}
m
k
(
m
−
(
k
+
1
)
)
=
1
+
∑
i
=
2
k
+
1
(
k
+
1
i
)
S
k
+
1
−
i
(
m
)
.
{\displaystyle m^{k}(m-(k+1))=1+\sum _{i=2}^{k+1}{\binom {k+1}{i}}S_{k+1-i}(m).}
10
Since the RHS is positive, we must therefore have
k
+
1
<
m
.
{\displaystyle k+1<m.}
11
Returning to (9 ) and taking r = k − 1 yields
m
k
=
1
+
k
⋅
S
k
−
1
(
m
)
+
∑
i
=
2
k
(
k
i
)
S
k
−
i
(
m
)
{\displaystyle m^{k}=1+k\cdot S_{k-1}(m)+\sum _{i=2}^{k}{\binom {k}{i}}S_{k-i}(m)}
m
k
=
1
+
∑
s
=
1
k
(
k
s
)
S
k
−
s
(
m
)
.
{\displaystyle m^{k}=1+\sum _{s=1}^{k}{\binom {k}{s}}S_{k-s}(m).}
Substituting this into (10 ) to eliminate m k yields
(
1
+
∑
s
=
1
k
(
k
s
)
S
k
−
s
(
m
)
)
(
m
−
(
k
+
1
)
)
=
1
+
∑
i
=
2
k
+
1
(
k
+
1
i
)
S
k
+
1
−
i
(
m
)
.
{\displaystyle \left(1+\sum _{s=1}^{k}{\binom {k}{s}}S_{k-s}(m)\right)(m-(k+1))=1+\sum _{i=2}^{k+1}{\binom {k+1}{i}}S_{k+1-i}(m).}
Reindexing the sum on the right with the substitution i = s + 1 yields
(
1
+
∑
s
=
1
k
(
k
s
)
S
k
−
s
(
m
)
)
(
m
−
(
k
+
1
)
)
=
1
+
∑
s
=
1
k
(
k
+
1
s
+
1
)
S
k
−
s
(
m
)
{\displaystyle \left(1+\sum _{s=1}^{k}{\binom {k}{s}}S_{k-s}(m)\right)(m-(k+1))=1+\sum _{s=1}^{k}{\binom {k+1}{s+1}}S_{k-s}(m)}
m
−
(
k
+
1
)
+
(
m
−
(
k
+
1
)
)
∑
s
=
1
k
(
k
s
)
S
k
−
s
(
m
)
=
1
+
∑
s
=
1
k
k
+
1
s
+
1
(
k
s
)
S
k
−
s
(
m
)
{\displaystyle m-(k+1)+(m-(k+1))\sum _{s=1}^{k}{\binom {k}{s}}S_{k-s}(m)=1+\sum _{s=1}^{k}{\frac {k+1}{s+1}}{\binom {k}{s}}S_{k-s}(m)}
m
−
k
−
2
=
∑
s
=
1
k
(
k
+
1
s
+
1
−
m
+
(
k
+
1
)
)
(
k
s
)
S
k
−
s
(
m
)
.
{\displaystyle m-k-2=\sum _{s=1}^{k}\left({\frac {k+1}{s+1}}-m+(k+1)\right){\binom {k}{s}}S_{k-s}(m).}
12
We already know from (11 ) that k + 1 < m . This leaves open the possibility that m = k + 2 ; however, substituting this into (12 ) yields
0
=
∑
s
=
1
k
(
k
+
1
s
+
1
−
1
)
(
k
s
)
S
k
−
s
(
k
+
2
)
{\displaystyle 0=\sum _{s=1}^{k}\left({\frac {k+1}{s+1}}-1\right){\binom {k}{s}}S_{k-s}(k+2)}
0
=
∑
s
=
1
k
k
−
s
s
+
1
(
k
s
)
S
k
−
s
(
k
+
2
)
{\displaystyle 0=\sum _{s=1}^{k}{\frac {k-s}{s+1}}{\binom {k}{s}}S_{k-s}(k+2)}
0
=
k
−
k
k
+
1
(
k
k
)
S
k
−
k
(
k
+
2
)
+
∑
s
=
1
k
−
1
k
−
s
s
+
1
(
k
s
)
S
k
−
s
(
k
+
2
)
{\displaystyle 0={\frac {k-k}{k+1}}{\binom {k}{k}}S_{k-k}(k+2)+\sum _{s=1}^{k-1}{\frac {k-s}{s+1}}{\binom {k}{s}}S_{k-s}(k+2)}
0
=
0
+
∑
s
=
1
k
−
1
k
−
s
s
+
1
(
k
s
)
S
k
−
s
(
k
+
2
)
,
{\displaystyle 0=0+\sum _{s=1}^{k-1}{\frac {k-s}{s+1}}{\binom {k}{s}}S_{k-s}(k+2),}
which is impossible for k > 1 , since the sum contains only positive terms. Therefore any nontrivial solutions must have m ≠ k + 2 ; combining this with (11 ) yields
k
+
2
<
m
.
{\displaystyle k+2<m.}
We therefore observe that the left-hand side of (12 ) is positive, so
0
<
∑
s
=
1
k
(
k
+
1
s
+
1
−
m
+
(
k
+
1
)
)
(
k
s
)
S
k
−
s
(
m
)
.
{\displaystyle 0<\sum _{s=1}^{k}\left({\frac {k+1}{s+1}}-m+(k+1)\right){\binom {k}{s}}S_{k-s}(m).}
13
Since k > 1 , the sequence
{
(
k
+
1
)
/
(
s
+
1
)
−
m
+
(
k
+
1
)
}
s
=
1
∞
{\displaystyle \left\{(k+1)/(s+1)-m+(k+1)\right\}_{s=1}^{\infty }}
is decreasing. This and (13 ) together imply that its first term (the term with s = 1 ) must be positive: if it were not, then every term in the sum would be nonpositive, and therefore so would the sum itself. Thus,
0
<
k
+
1
1
+
1
−
m
+
(
k
+
1
)
,
{\displaystyle 0<{\frac {k+1}{1+1}}-m+(k+1),}
which yields
m
<
3
2
⋅
(
k
+
1
)
{\displaystyle m<{\frac {3}{2}}\cdot (k+1)}
and therefore
m
k
+
1
<
3
2
,
{\displaystyle {\frac {m}{k+1}}<{\frac {3}{2}},}
as desired.
Continued fractions [ edit ]
Any potential solutions to the equation must arise from the continued fraction of the natural logarithm of 2 : specifically, 2k / (2m − 3) must be a convergent of that number.[ 1]
By expanding the Taylor series of (1 − y )k e ky about y = 0 , one finds
(
1
−
y
)
k
=
e
−
k
y
(
1
−
k
2
y
2
−
k
3
y
3
+
k
(
k
−
2
)
8
y
4
+
k
(
5
k
−
6
)
30
y
5
+
O
(
y
6
)
)
as
y
→
0.
{\displaystyle (1-y)^{k}=e^{-ky}\left(1-{\frac {k}{2}}y^{2}-{\frac {k}{3}}y^{3}+{\frac {k(k-2)}{8}}y^{4}+{\frac {k(5k-6)}{30}}y^{5}+O(y^{6})\right)\quad {\text{as }}y\rightarrow 0.}
More elaborate analysis sharpens this to
e
−
k
y
(
1
−
k
2
y
2
−
k
3
y
3
+
k
(
k
−
2
)
8
y
4
+
k
(
5
k
−
6
)
30
y
5
−
k
3
6
y
6
)
<
(
1
−
y
)
k
<
e
−
k
y
(
1
−
k
2
y
2
−
k
3
y
3
+
k
(
k
−
2
)
8
y
4
+
k
2
2
y
5
)
{\displaystyle {\begin{aligned}e^{-ky}\left(1-{\frac {k}{2}}y^{2}-{\frac {k}{3}}y^{3}+{\frac {k(k-2)}{8}}y^{4}+{\frac {k(5k-6)}{30}}y^{5}-{\frac {k^{3}}{6}}y^{6}\right)\\<(1-y)^{k}<e^{-ky}\left(1-{\frac {k}{2}}y^{2}-{\frac {k}{3}}y^{3}+{\frac {k(k-2)}{8}}y^{4}+{\frac {k^{2}}{2}}y^{5}\right)\end{aligned}}}
14
for k > 8 and 0 < y < 1 .
The Erdős–Moser equation is equivalent to
1
=
∑
j
=
1
m
−
1
(
1
−
j
m
)
k
.
{\displaystyle 1=\sum _{j=1}^{m-1}\left(1-{\frac {j}{m}}\right)^{k}.}
Applying (14 ) to each term in this sum yields
T
0
−
k
2
m
2
T
2
−
k
3
m
3
T
3
+
k
(
k
−
2
)
8
m
4
T
4
+
k
(
5
k
−
6
)
30
m
5
T
5
−
k
3
6
m
6
T
6
<
∑
j
=
1
m
−
1
(
1
−
j
m
)
k
<
T
0
−
k
2
m
2
T
2
−
k
3
m
3
T
3
+
k
(
k
−
2
)
8
m
4
T
4
+
k
2
2
m
5
T
5
,
{\displaystyle {\begin{aligned}T_{0}-{\frac {k}{2m^{2}}}T_{2}-{\frac {k}{3m^{3}}}T_{3}+{\frac {k(k-2)}{8m^{4}}}T_{4}+{\frac {k(5k-6)}{30m^{5}}}T_{5}-{\frac {k^{3}}{6m^{6}}}T_{6}\qquad \qquad \\<\sum _{j=1}^{m-1}\left(1-{\frac {j}{m}}\right)^{k}<T_{0}-{\frac {k}{2m^{2}}}T_{2}-{\frac {k}{3m^{3}}}T_{3}+{\frac {k(k-2)}{8m^{4}}}T_{4}+{\frac {k^{2}}{2m^{5}}}T_{5},\end{aligned}}}
where
T
n
=
∑
j
=
1
m
−
1
j
n
z
j
{\displaystyle T_{n}=\sum _{j=1}^{m-1}j^{n}z^{j}}
and z = e −k /m . Further manipulation eventually yields
|
1
−
z
1
−
z
+
k
2
m
2
z
2
+
z
(
1
−
z
)
3
+
k
3
m
3
z
3
+
4
z
2
+
z
(
1
−
z
)
4
−
k
(
k
−
2
)
8
m
4
z
4
+
11
z
3
+
11
z
2
+
z
(
1
−
z
)
5
|
<
110000
m
3
.
{\displaystyle \left\vert 1-{\frac {z}{1-z}}+{\frac {k}{2m^{2}}}{\frac {z^{2}+z}{(1-z)^{3}}}+{\frac {k}{3m^{3}}}{\frac {z^{3}+4z^{2}+z}{(1-z)^{4}}}-{\frac {k(k-2)}{8m^{4}}}{\frac {z^{4}+11z^{3}+11z^{2}+z}{(1-z)^{5}}}\right\vert <{\frac {110000}{m^{3}}}.}
15
We already know that k /m is bounded as m → ∞ ; making the ansatz k /m = c + O (1/m ) , and therefore z = e −c + O (1/m ) , and substituting it into (15 ) yields
1
−
1
e
c
−
1
=
O
(
1
m
)
as
m
→
∞
;
{\displaystyle 1-{\frac {1}{e^{c}-1}}=O\left({\frac {1}{m}}\right)\quad {\text{as }}m\rightarrow \infty ;}
therefore c = ln(2) . We therefore have
k
m
=
ln
(
2
)
+
a
m
+
b
m
2
+
O
(
1
m
3
)
as
m
→
∞
,
{\displaystyle {\frac {k}{m}}=\ln(2)+{\frac {a}{m}}+{\frac {b}{m^{2}}}+O\left({\frac {1}{m^{3}}}\right)\quad {\text{as }}m\rightarrow \infty ,}
16
and so
1
z
=
e
k
/
m
=
2
+
2
a
m
+
a
2
+
2
b
m
2
+
O
(
1
m
3
)
as
m
→
∞
.
{\displaystyle {\frac {1}{z}}=e^{k/m}=2+{\frac {2a}{m}}+{\frac {a^{2}+2b}{m^{2}}}+O\left({\frac {1}{m^{3}}}\right)\quad {\text{as }}m\rightarrow \infty .}
Substituting these formulas into (15 ) yields a = −3 ln(2) / 2 and b = (3 ln(2) − 25/12) ln(2) . Putting these into (16 ) yields
k
m
=
ln
(
2
)
(
1
−
3
2
m
−
25
12
−
3
ln
(
2
)
m
2
+
O
(
1
m
3
)
)
as
m
→
∞
.
{\displaystyle {\frac {k}{m}}=\ln(2)\left(1-{\frac {3}{2m}}-{\frac {{\frac {25}{12}}-3\ln(2)}{m^{2}}}+O\left({\frac {1}{m^{3}}}\right)\right)\quad {\text{as }}m\rightarrow \infty .}
The term O (1/m 3 ) must be bounded effectively . To that end, we define the function
F
(
x
,
λ
)
=
(
1
−
1
t
−
1
+
x
λ
2
t
+
t
2
(
t
−
1
)
3
+
x
2
λ
3
t
+
4
t
2
+
t
3
(
t
−
1
)
4
−
x
2
λ
(
λ
−
2
x
)
8
t
+
11
t
2
+
11
t
3
+
t
4
(
t
−
1
)
5
)
|
t
=
e
λ
.
{\displaystyle F(x,\lambda )=\left.\left(1-{\frac {1}{t-1}}+{\frac {x\lambda }{2}}{\frac {t+t^{2}}{(t-1)^{3}}}+{\frac {x^{2}\lambda }{3}}{\frac {t+4t^{2}+t^{3}}{(t-1)^{4}}}-{\frac {x^{2}\lambda (\lambda -2x)}{8}}{\frac {t+11t^{2}+11t^{3}+t^{4}}{(t-1)^{5}}}\right)\right\vert _{t=e^{\lambda }}.}
The inequality (15 ) then takes the form
|
F
(
1
m
,
k
m
)
|
<
110000
m
3
,
{\displaystyle \left\vert F\left({\frac {1}{m}},{\frac {k}{m}}\right)\right\vert <{\frac {110000}{m^{3}}},}
17
and we further have
F
(
x
,
ln
(
2
)
(
1
−
3
2
x
−
0.004
x
2
)
)
>
−
0.005
15
x
2
−
100
x
3
and
F
(
x
,
ln
(
2
)
(
1
−
3
2
x
−
0.004
x
2
)
)
<
−
0.00015
x
2
+
100
x
3
{\displaystyle {\begin{aligned}F(x,\ln(2)(1-{\tfrac {3}{2}}x\,{\phantom {-\;0.004x^{2}}}))&>{\phantom {-}}0.005{\phantom {15}}x^{2}-100x^{3}\quad {\text{and}}\\F(x,\ln(2)(1-{\tfrac {3}{2}}x-0.004x^{2}))&<-0.00015x^{2}+100x^{3}\end{aligned}}}
for x ≤ 0.01 . Therefore
F
(
1
m
,
ln
(
2
)
(
1
−
3
2
m
−
0.004
m
2
)
)
>
−
110000
m
3
for
m
>
2202
⋅
10
4
and
F
(
1
m
,
ln
(
2
)
(
1
−
3
2
m
−
0.004
m
2
)
)
<
−
110000
m
3
for
m
>
0
734
⋅
10
6
.
{\displaystyle {\begin{aligned}F\left({\frac {1}{m}},\ln(2)\left(1-{\frac {3}{2m}}\,{\phantom {\;-{\frac {0.004}{m^{2}}}}}\right)\right)&>{\phantom {-}}{\frac {110000}{m^{3}}}\quad {\text{for }}m>2202\cdot 10^{4}\quad {\text{and}}\\F\left({\frac {1}{m}},\ln(2)\left(1-{\frac {3}{2m}}-{\frac {0.004}{m^{2}}}\right)\right)&<-{\frac {110000}{m^{3}}}\quad {\text{for }}m>{\phantom {0}}734\cdot 10^{6}.\end{aligned}}}
Comparing these with (17 ) then shows that, for m > 109 , we have
ln
(
2
)
(
1
−
3
2
m
−
0.004
m
2
)
<
k
m
<
ln
(
2
)
(
1
−
3
2
m
)
,
{\displaystyle \ln(2)\left(1-{\frac {3}{2m}}-{\frac {0.004}{m^{2}}}\right)<{\frac {k}{m}}<\ln(2)\left(1-{\frac {3}{2m}}\right),}
and therefore
0
<
ln
(
2
)
−
2
k
2
m
−
3
<
0.0111
(
2
m
−
3
)
2
.
{\displaystyle 0<\ln(2)-{\frac {2k}{2m-3}}<{\frac {0.0111}{(2m-3)^{2}}}.}
Recalling that Moser showed[ 2] that indeed m > 109 , and then invoking Legendre's theorem on continued fractions , finally proves that 2k / (2m – 3) must be a convergent to ln(2) . Leveraging this result, 31 billion decimal digits of ln(2) can be used to exclude any nontrivial solutions below 10109 .[ 1]
^ a b c d e Gallot, Yves; Moree, Pieter; Zudilin, Wadim (2010). "The Erdős–Moser Equation 1k + 2k + ⋯ + (m – 1)k = m k Revisited Using Continued Fractions" (PDF) . Mathematics of Computation . 80 : 1221– 1237. arXiv :0907.1356 . doi :10.1090/S0025-5718-2010-02439-1 . S2CID 16305654 . Archived from the original on 2024-05-08. Retrieved 2017-03-20 .
^ a b c d Moser, Leo (1953). "On the Diophantine Equation 1k + 2k + ... + (m – 1)k = m k ". Scripta Mathematica . 19 : 84– 88.
^ a b Krzysztofek, Bronisław (1966). "O Rówaniu 1n + ... + m n = (m + 1)n ·k " (PDF) . Zeszyty Naukowe Wyżsej Szkoły Pedagogicznej w Katowicach—Sekcja Matematyki (in Polish). 5 : 47– 54. Archived from the original (PDF) on 2024-05-13. Retrieved 2024-05-13 .
^ Moree, Pieter; te Riele, Herman ; Urbanowicz, Jerzy (1994). "Divisibility Properties of Integers x , k Satisfying 1k + 2k + ⋯ + (x – 1)k = x k " (PDF) . Mathematics of Computation . 63 : 799– 815. doi :10.1090/s0025-5718-1994-1257577-1 . Archived from the original on 2024-05-08. Retrieved 2017-03-20 .
^ a b Butske, William; Jaje, Lynda M.; Mayernik, Daniel R. (1999). "The Equation Σp |N 1/p + 1/N = 1 , Pseudoperfect Numbers, and Partially Weighted Graphs" (PDF) . Mathematics of Computation . 69 : 407– 420. doi :10.1090/s0025-5718-99-01088-1 . Archived from the original on 2024-05-08. Retrieved 2017-03-20 .
^ Kellner, Bernd Christian (2002). Über irreguläre Paare höherer Ordnungen (PDF) (Thesis) (in German). University of Göttingen . Archived from the original (PDF) on 2024-03-12. Retrieved 2024-03-12 .
^ Moree, Pieter (2013-10-01). "Moser's mathemagical work on the equation 1k + 2k + ⋯ + (m – 1)k = m k " . Rocky Mountain Journal of Mathematics . 43 (5): 1707– 1737. arXiv :1011.2940 . doi :10.1216/RMJ-2013-43-5-1707 . ISSN 0035-7596 .