KCNN2 | |||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
![]() | |||||||||||||||||||||||||||||||||||||||||||||||||||
Identifiers | |||||||||||||||||||||||||||||||||||||||||||||||||||
Aliases | KCNN2, KCa2.2, SK2, SKCA2, SKCa 2, hSK2, potassium calcium-activated channel subfamily N member 2, DYT34, NEDMAB | ||||||||||||||||||||||||||||||||||||||||||||||||||
External IDs | OMIM: 605879; MGI: 2153182; HomoloGene: 23150; GeneCards: KCNN2; OMA:KCNN2 - orthologs | ||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Wikidata | |||||||||||||||||||||||||||||||||||||||||||||||||||
|
Potassium intermediate/small conductance calcium-activated channel, subfamily N, member 2, also known as KCNN2, is a protein which in humans is encoded by the KCNN2 gene.[5] KCNN2 is an ion channel protein also known as KCa2.2.[6][7]
Function
Action potentials in vertebrate neurons are followed by an afterhyperpolarization (AHP) that may persist for several seconds and may have profound consequences for the firing pattern of the neuron. Each component of the AHP is kinetically distinct and is mediated by different calcium-activated potassium channels. The KCa2.2 protein is activated before membrane hyperpolarization and is thought to regulate neuronal excitability by contributing to the slow component of synaptic AHP. KCa2.2 is an integral membrane protein that forms a voltage-independent calcium-activated channel with three other calmodulin-binding subunits. This protein is a member of the calcium-activated potassium channel family. Two transcript variants encoding different isoforms have been found for the KCNN2 gene.[6]
In a 2009 study, SK2 (KCNN2) potassium channel was overexpressed in the basolateral amygdala using a herpes simplex viral system. This reduced anxiety and stress-induced corticosterone secretion at a systemic level. SK2 overexpression also reduced dendritic arborization of the amygdala neurons.[8] In a 2015 study, it was found that UBE3A, the protein maternally deleted in Angelman syndrome, marks KCNN2 for degradation in the hippocampus, and that UBE3A deficiency is associated with an increase in KCNN2 levels. KCNN2 operates through a negative feedback loop to reduce glutamatergic NMDA receptor activation when it itself is activated by that same receptor. Angelman syndrome therefore leads to a reduction in glutamatergic NMDA receptor activation, which impairs long-term potentiation of hippocampal neurons and thus fear conditioning.[9]
Target of acaricide
The corresponding KCa2 channel in the spider mite tetranychus urticae is the target of the acaricide acynonapyr in IRAC group 33.[10]
See also
References
- ^ a b c GRCh38: Ensembl release 89: ENSG00000080709 – Ensembl, May 2017
- ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000054477 – Ensembl, May 2017
- ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- ^ Wei AD, Gutman GA, Aldrich R, Chandy KG, Grissmer S, Wulff H (December 2005). "International Union of Pharmacology. LII. Nomenclature and molecular relationships of calcium-activated potassium channels". Pharmacological Reviews. 57 (4): 463–472. doi:10.1124/pr.57.4.9. PMID 16382103. S2CID 8290401.
- ^ a b "Entrez Gene: KCNN2 potassium intermediate/small conductance calcium-activated channel, subfamily N, member 2".
- ^ Brown BM, Shim H, Christophersen P, Wulff H (July 23, 2019). "Pharmacology of Small- and Intermediate-Conductance Calcium-Activated Potassium Channels". Annual Review of Pharmacology and Toxicology. 60 (published 2020): 219–240. doi:10.1146/annurev-pharmtox-010919-023420. PMC 9615427. PMID 31337271.
- ^ Mitra R, Ferguson D, Sapolsky RM (February 2009). "SK2 potassium channel over-expression in basolateral amygdala reduces anxiety, stress-induced corticosterone and dendritic arborization". Molecular Psychiatry. 14 (9): 847–55, 827. doi:10.1038/mp.2009.9. PMC 2763614. PMID 19204724.
- ^ Sun J, Zhu G, Liu Y, Standley S, Ji A, Tunuguntla R, et al. (2015-07-21). "UBE3A Regulates Synaptic Plasticity and Learning and Memory by Controlling SK2 Channel Endocytosis". Cell Reports. 12 (3): 449–461. doi:10.1016/j.celrep.2015.06.023. ISSN 2211-1247. PMC 4520703. PMID 26166566.
- ^ Hirata K, Kudo K, Amano T, Kawaguchi M (September 2024). "Effects of the novel acaricide acynonapyr on the calcium-activated potassium channel". Pesticide Biochemistry and Physiology. 204: 106074. doi:10.1016/j.pestbp.2024.106074. PMID 39277387.
Further reading
- Wei AD, Gutman GA, Aldrich R, Chandy KG, Grissmer S, Wulff H (2006). "International Union of Pharmacology. LII. Nomenclature and molecular relationships of calcium-activated potassium channels". Pharmacological Reviews. 57 (4): 463–472. doi:10.1124/pr.57.4.9. PMID 16382103. S2CID 8290401.
- Jäger H, Adelman JP, Grissmer S (2000). "SK2 encodes the apamin-sensitive Ca2+-activated K+ channels in the human leukemic T cell line, Jurkat". FEBS Letters. 469 (2–3): 196–202. Bibcode:2000FEBSL.469..196J. doi:10.1016/S0014-5793(00)01236-9. PMID 10713270. S2CID 44455392.
- Liu QH, Williams DA, McManus C, Baribaud F, Doms RW, Schols D, et al. (2000). "HIV-1 gp120 and chemokines activate ion channels in primary macrophages through CCR5 and CXCR4 stimulation". Proceedings of the National Academy of Sciences of the United States of America. 97 (9): 4832–4837. Bibcode:2000PNAS...97.4832L. doi:10.1073/pnas.090521697. PMC 18318. PMID 10758170.
- Desai R, Peretz A, Idelson H, Lazarovici P, Attali B (2001). "Ca2+-activated K+ channels in human leukemic Jurkat T cells. Molecular cloning, biochemical and functional characterization". Journal of Biological Chemistry. 275 (51): 39954–39963. doi:10.1074/jbc.M001562200. PMID 10991935.
- Rimini R, Rimland JM, Terstappen GC (2001). "Quantitative expression analysis of the small conductance calcium-activated potassium channels, SK1, SK2 and SK3, in human brain". Brain Research. Molecular Brain Research. 85 (1–2): 218–220. doi:10.1016/S0169-328X(00)00255-2. PMID 11146124.
- Schumacher MA, Rivard AF, Bächinger HP, Adelman JP (2001). "Structure of the gating domain of a Ca2+-activated K+ channel complexed with Ca2+/calmodulin". Nature. 410 (6832): 1120–1124. Bibcode:2001Natur.410.1120S. doi:10.1038/35074145. PMID 11323678. S2CID 205016620.
- Miller MJ, Rauer H, Tomita H, Rauer H, Gargus JJ, Gutman GA, et al. (2001). "Nuclear localization and dominant-negative suppression by a mutant SKCa3 N-terminal channel fragment identified in a patient with schizophrenia". Journal of Biological Chemistry. 276 (30): 27753–27756. doi:10.1074/jbc.C100221200. PMID 11395478.
- Piotrowska AP, Solari V, Puri P (2003). "Distribution of Ca2+-activated K channels, SK2 and SK3, in the normal and Hirschsprung's disease bowel". Journal of Pediatric Surgery. 38 (6): 978–983. doi:10.1016/S0022-3468(03)00138-6. PMID 12778407.
- Xu Y, Tuteja D, Zhang Z, Xu D, Zhang Y, Rodriguez J, et al. (2004). "Molecular identification and functional roles of a Ca2+-activated K+ channel in human and mouse hearts". Journal of Biological Chemistry. 278 (49): 49085–49094. doi:10.1074/jbc.M307508200. PMID 13679367.
- Feranchak AP, Doctor RB, Troetsch M, Brookman K, Johnson SM, Fitz JG (2004). "Calcium-dependent regulation of secretion in biliary epithelial cells: the role of apamin-sensitive SK channels". Gastroenterology. 127 (3): 903–913. doi:10.1053/j.gastro.2004.06.047. PMID 15362045.
- Tajima N, Schonherr K, Niedling S, Kaatz M, Kanno H, Schonherr R, et al. (2006). "Ca2+-activated K+ channels in human melanoma cells are up-regulated by hypoxia involving hypoxia-inducible factor-1α and the von Hippel-Lindau protein". The Journal of Physiology. 571 (Pt 2): 349–359. doi:10.1113/jphysiol.2005.096818. PMC 1796787. PMID 16396931.
- Lu L, Zhang Q, Timofeyev V, Zhang Z, Young JN, Shin HS, et al. (2007). "Molecular coupling of a Ca2+-activated K+ channel to L-type Ca2+ channels via alpha-actinin2". Circulation Research. 100 (1): 112–120. doi:10.1161/01.RES.0000253095.44186.72. PMID 17110593.
- Morimoto T, Ohya S, Hayashi H, Onozaki K, Imaizumi Y (2007). "Cell-cycle-dependent regulation of Ca2+-activated K+ channel in Jurkat T-lymphocyte". Journal of Pharmacological Sciences. 104 (1): 94–98. doi:10.1254/jphs.SC0070032. PMID 17452806.
- Dolga AM, Terpolilli N, Kepura F, Nijholt IM, Knaus HG, D'Orsi B, et al. (2011). "KCa2 channels activation prevents [Ca2+]i deregulation and reduces neuronal death following glutamate toxicity and cerebral ischemia". Cell Death & Disease. 2 (e147): e147. doi:10.1038/cddis.2011.30. PMC 3122061. PMID 21509037.
This article incorporates text from the United States National Library of Medicine, which is in the public domain.