Epstein Files Full PDF

CLICK HERE
Technopedia Center
PMB University Brochure
Faculty of Engineering and Computer Science
S1 Informatics S1 Information Systems S1 Information Technology S1 Computer Engineering S1 Electrical Engineering S1 Civil Engineering

faculty of Economics and Business
S1 Management S1 Accountancy

Faculty of Letters and Educational Sciences
S1 English literature S1 English language education S1 Mathematics education S1 Sports Education
teknopedia

  • Registerasi
  • Brosur UTI
  • Kip Scholarship Information
  • Performance
Flag Counter
  1. World Encyclopedia
  2. Matrix of ones - Wikipedia
Matrix of ones - Wikipedia
From Wikipedia, the free encyclopedia
Matrix with every entry equal to one

In mathematics, a matrix of ones or all-ones matrix is a matrix with every entry equal to one.[1] For example:

J 2 = [ 1 1 1 1 ] , J 3 = [ 1 1 1 1 1 1 1 1 1 ] , J 2 , 5 = [ 1 1 1 1 1 1 1 1 1 1 ] , J 1 , 2 = [ 1 1 ] . {\displaystyle J_{2}={\begin{bmatrix}1&1\\1&1\end{bmatrix}},\quad J_{3}={\begin{bmatrix}1&1&1\\1&1&1\\1&1&1\end{bmatrix}},\quad J_{2,5}={\begin{bmatrix}1&1&1&1&1\\1&1&1&1&1\end{bmatrix}},\quad J_{1,2}={\begin{bmatrix}1&1\end{bmatrix}}.\quad } {\displaystyle J_{2}={\begin{bmatrix}1&1\\1&1\end{bmatrix}},\quad J_{3}={\begin{bmatrix}1&1&1\\1&1&1\\1&1&1\end{bmatrix}},\quad J_{2,5}={\begin{bmatrix}1&1&1&1&1\\1&1&1&1&1\end{bmatrix}},\quad J_{1,2}={\begin{bmatrix}1&1\end{bmatrix}}.\quad }

Some sources call the all-ones matrix the unit matrix,[2] but that term may also refer to the identity matrix, a different type of matrix.

A vector of ones or all-ones vector is matrix of ones having row or column form; it should not be confused with unit vectors.

Properties

[edit]

For an n × n matrix of ones J, the following properties hold:

  • The trace of J equals n,[3] and the determinant equals 0 for n ≥ 2, but equals 1 if n = 1.
  • The characteristic polynomial of J is ( x − n ) x n − 1 {\displaystyle (x-n)x^{n-1}} {\displaystyle (x-n)x^{n-1}}.
  • The minimal polynomial of J is x 2 − n x {\displaystyle x^{2}-nx} {\displaystyle x^{2}-nx}.
  • The rank of J is 1 and the eigenvalues are n with multiplicity 1 and 0 with multiplicity n − 1.[4]
  • J k = n k − 1 J {\displaystyle J^{k}=n^{k-1}J} {\displaystyle J^{k}=n^{k-1}J} for k = 1 , 2 , … . {\displaystyle k=1,2,\ldots .} {\displaystyle k=1,2,\ldots .}[5]
  • J is the neutral element of the Hadamard product.[6]

When J is considered as a matrix over the real numbers, the following additional properties hold:

  • J is positive semi-definite matrix.
  • The matrix 1 n J {\displaystyle {\tfrac {1}{n}}J} {\displaystyle {\tfrac {1}{n}}J} is idempotent.[5]
  • The matrix exponential of J is exp ⁡ ( μ J ) = I + e μ n − 1 n J {\displaystyle \exp(\mu J)=I+{\frac {e^{\mu n}-1}{n}}J} {\displaystyle \exp(\mu J)=I+{\frac {e^{\mu n}-1}{n}}J}

Applications

[edit]

The all-ones matrix arises in the mathematical field of combinatorics, particularly involving the application of algebraic methods to graph theory. For example, if A is the adjacency matrix of an n-vertex undirected graph G, and J is the all-ones matrix of the same dimension, then G is a regular graph if and only if AJ = JA.[7] As a second example, the matrix appears in some linear-algebraic proofs of Cayley's formula, which gives the number of spanning trees of a complete graph, using the matrix tree theorem.

The logical square roots of a matrix of ones, logical matrices whose square is a matrix of ones, can be used to characterize the central groupoids. Central groupoids are algebraic structures that obey the identity ( a ⋅ b ) ⋅ ( b ⋅ c ) = b {\displaystyle (a\cdot b)\cdot (b\cdot c)=b} {\displaystyle (a\cdot b)\cdot (b\cdot c)=b}. Finite central groupoids have a square number of elements, and the corresponding logical matrices exist only for those dimensions.[8]

See also

[edit]
  • Zero matrix, a matrix where all entries are zero
  • Single-entry matrix

References

[edit]
  1. ^ Horn, Roger A.; Johnson, Charles R. (2012), "0.2.8 The all-ones matrix and vector", Matrix Analysis, Cambridge University Press, p. 8, ISBN 9780521839402.
  2. ^ Weisstein, Eric W., "Unit Matrix", MathWorld
  3. ^ Stanley, Richard P. (2013), Algebraic Combinatorics: Walks, Trees, Tableaux, and More, Springer, Lemma 1.4, p. 4, ISBN 9781461469988.
  4. ^ Stanley (2013); Horn & Johnson (2012), p. 65.
  5. ^ a b Timm, Neil H. (2002), Applied Multivariate Analysis, Springer texts in statistics, Springer, p. 30, ISBN 9780387227719.
  6. ^ Smith, Jonathan D. H. (2011), Introduction to Abstract Algebra, CRC Press, p. 77, ISBN 9781420063721.
  7. ^ Godsil, Chris (1993), Algebraic Combinatorics, CRC Press, Lemma 4.1, p. 25, ISBN 9780412041310.
  8. ^ Knuth, Donald E. (1970), "Notes on central groupoids", Journal of Combinatorial Theory, 8 (4): 376–390, doi:10.1016/S0021-9800(70)80032-1, MR 0259000
  • v
  • t
  • e
Matrix classes
Explicitly constrained entries
  • Alternant
  • Anti-diagonal
  • Anti-Hermitian
  • Anti-symmetric
  • Arrowhead
  • Band
  • Bidiagonal
  • Bisymmetric
  • Block-diagonal
  • Block
  • Block tridiagonal
  • Boolean
  • Cauchy
  • Centrosymmetric
  • Conference
  • Complex Hadamard
  • Copositive
  • Diagonally dominant
  • Diagonal
  • Discrete Fourier Transform
  • Elementary
  • Equivalent
  • Frobenius
  • Generalized permutation
  • Hadamard
  • Hankel
  • Hermitian
  • Hessenberg
  • Hollow
  • Integer
  • Logical
  • Matrix unit
  • Metzler
  • Moore
  • Nonnegative
  • Pentadiagonal
  • Permutation
  • Persymmetric
  • Polynomial
  • Quaternionic
  • Signature
  • Skew-Hermitian
  • Skew-symmetric
  • Skyline
  • Sparse
  • Sylvester
  • Symmetric
  • Toeplitz
  • Triangular
  • Tridiagonal
  • Vandermonde
  • Walsh
  • Z
Constant
  • Exchange
  • Hilbert
  • Identity
  • Lehmer
  • Of ones
  • Pascal
  • Pauli
  • Redheffer
  • Shift
  • Zero
Conditions on eigenvalues or eigenvectors
  • Companion
  • Convergent
  • Defective
  • Definite
  • Diagonalizable
  • Hurwitz-stable
  • Positive-definite
  • Stieltjes
Satisfying conditions on products or inverses
  • Congruent
  • Idempotent or Projection
  • Invertible
  • Involutory
  • Nilpotent
  • Normal
  • Orthogonal
  • Unimodular
  • Unipotent
  • Unitary
  • Totally unimodular
  • Weighing
With specific applications
  • Adjugate
  • Alternating sign
  • Augmented
  • Bézout
  • Jabotinsky
  • Cartan
  • Circulant
  • Cofactor
  • Commutation
  • Confusion
  • Coxeter
  • Distance
  • Duplication and elimination
  • Euclidean distance
  • Fundamental (linear differential equation)
  • Generator
  • Gram
  • Hessian
  • Householder
  • Jacobian
  • Moment
  • Payoff
  • Pick
  • Random
  • Rotation
  • Routh-Hurwitz
  • Seifert
  • Shear
  • Similarity
  • Symplectic
  • Totally positive
  • Transformation
Used in statistics
  • Centering
  • Correlation
  • Covariance
  • Design
  • Doubly stochastic
  • Fisher information
  • Hat
  • Precision
  • Stochastic
  • Transition
Used in graph theory
  • Adjacency
  • Biadjacency
  • Degree
  • Edmonds
  • Incidence
  • Laplacian
  • Seidel adjacency
  • Tutte
Used in science and engineering
  • Cabibbo–Kobayashi–Maskawa
  • Density
  • Fundamental (computer vision)
  • Fuzzy associative
  • Gamma
  • Gell-Mann
  • Hamiltonian
  • Irregular
  • Overlap
  • S
  • State transition
  • Substitution
  • Z (chemistry)
Related terms
  • Jordan normal form
  • Linear independence
  • Matrix exponential
  • Matrix representation of conic sections
  • Perfect matrix
  • Pseudoinverse
  • Row echelon form
  • Wronskian
  • icon Mathematics portal
  • List of matrices
  • Category:Matrices (mathematics)
Retrieved from "https://teknopedia.ac.id/w/index.php?title=Matrix_of_ones&oldid=1330717319"
Categories:
  • Matrices (mathematics)
  • 1 (number)
Hidden categories:
  • Articles with short description
  • Short description is different from Wikidata

  • indonesia
  • Polski
  • العربية
  • Deutsch
  • English
  • Español
  • Français
  • Italiano
  • مصرى
  • Nederlands
  • 日本語
  • Português
  • Sinugboanong Binisaya
  • Svenska
  • Українська
  • Tiếng Việt
  • Winaray
  • 中文
  • Русский
Sunting pranala
url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url
Pusat Layanan

UNIVERSITAS TEKNOKRAT INDONESIA | ASEAN's Best Private University
Jl. ZA. Pagar Alam No.9 -11, Labuhan Ratu, Kec. Kedaton, Kota Bandar Lampung, Lampung 35132
Phone: (0721) 702022
Email: pmb@teknokrat.ac.id