Epstein Files Full PDF

CLICK HERE
Technopedia Center
PMB University Brochure
Faculty of Engineering and Computer Science
S1 Informatics S1 Information Systems S1 Information Technology S1 Computer Engineering S1 Electrical Engineering S1 Civil Engineering

faculty of Economics and Business
S1 Management S1 Accountancy

Faculty of Letters and Educational Sciences
S1 English literature S1 English language education S1 Mathematics education S1 Sports Education
teknopedia

  • Registerasi
  • Brosur UTI
  • Kip Scholarship Information
  • Performance
Flag Counter
  1. World Encyclopedia
  2. Prime k-tuple - Wikipedia
Prime k-tuple - Wikipedia
From Wikipedia, the free encyclopedia
Repeatable pattern of differences between prime numbers

In number theory, a prime k-tuple is a finite collection of values representing a repeatable pattern of differences between prime numbers. For a k-tuple (a, b, …), the positions where the k-tuple matches a pattern in the prime numbers are given by the set of integers n for which all of the values (n + a, n + b, …) are prime. Typically the first value in the k-tuple is 0 and the rest are distinct positive even numbers.[1]

Named patterns

[edit]

Several of the shortest k-tuples are known by other common names:

(0, 2) twin primes
(0, 4) cousin primes
(0, 6) sexy primes
(0, 2, 6), (0, 4, 6) prime triplets
(0, 6, 12) sexy prime triplets
(0, 2, 6, 8) prime quadruplets, prime decade
(0, 6, 12, 18) sexy prime quadruplets
(0, 2, 6, 8, 12), (0, 4, 6, 10, 12) prime quintuplets
(0, 4, 6, 10, 12, 16) prime sextuplets

OEIS sequence A257124 covers 7-tuples (prime septuplets) and contains an overview of related sequences, e.g. the three sequences corresponding to the three admissible 8-tuples (prime octuplets), and the union of all 8-tuples. The first term in these sequences corresponds to the first prime in the smallest prime constellation shown below.

Admissibility

[edit]

In order for a k-tuple to have infinitely many positions at which all of its values are prime, there cannot exist a prime p such that the tuple includes every different possible value modulo p. If such a prime p existed, then no matter which value of n was chosen, one of the values formed by adding n to the tuple would be divisible by p, so the only possible placements would have to include p itself, and there are at most k of those. For example, the numbers in a k-tuple cannot take on all three values 0, 1, and 2 modulo 3; otherwise the resulting numbers would always include a multiple of 3 and therefore could not all be prime unless one of the numbers is 3 itself.

A k-tuple that includes every possible residue modulo p is said to be inadmissible modulo p. It should be obvious that this is only possible when k ≥ p. A tuple which is not inadmissible modulo p is called admissible.

It is conjectured that every admissible k-tuple matches infinitely many positions in the sequence of prime numbers. However, there is no tuple for which this has been proven except the trivial 1-tuple (0). In that case, the conjecture is equivalent to the statement that there are infinitely many primes. Nevertheless, Yitang Zhang proved in 2013 that there exists at least one 2-tuple which matches infinitely many positions; subsequent work showed that such a 2-tuple exists with values differing by 246 or less that matches infinitely many positions.[2]

Positions matched by inadmissible patterns

[edit]

Although (0, 2, 4) is inadmissible modulo 3, it does produce the single set of primes, (3, 5, 7).

Because 3 is the first odd prime, a non-trivial (k ≥ 1) k-tuple matching the prime 3 can only match in one position. If the tuple begins (0, 1, ...) (i.e. is inadmissible modulo 2) then it can only match (2, 3, ...); if the tuple contains only even numbers, it can only match (3, ...).

Inadmissible k-tuples can have more than one all-prime solution if they are admissible modulo 2 and 3, and inadmissible modulo p ≥ 5. This of course implies that there must be at least five numbers in the tuple. The shortest inadmissible tuple with more than one solution is the 5-tuple (0, 2, 8, 14, 26), which has two solutions: (3, 5, 11, 17, 29) and (5, 7, 13, 19, 31), where all values modulo 5 are included in both cases. Examples with three or more solutions also exist.[3]

Prime constellations

[edit]

The diameter of a k-tuple is the difference of its largest and smallest elements. An admissible prime k-tuple with the smallest possible diameter d (among all admissible k-tuples) is a prime constellation. For all n ≥ k this will always produce consecutive primes.[4] (Recall that all n are integers for which the values (n + a, n + b, …) are prime.)

This means that, for large n:

p n + k − 1 − p n ≥ d {\displaystyle p_{n+k-1}-p_{n}\geq d} {\displaystyle p_{n+k-1}-p_{n}\geq d}

where pn is the nth prime number.

The first few prime constellations are:

k d Constellation Smallest[5]
2 2 (0, 2) (3, 5)
3 6 (0, 2, 6)
(0, 4, 6)
(5, 7, 11)
(7, 11, 13)
4 8 (0, 2, 6, 8) (5, 7, 11, 13)
5 12 (0, 2, 6, 8, 12)
(0, 4, 6, 10, 12)
(5, 7, 11, 13, 17)
(7, 11, 13, 17, 19)
6 16 (0, 4, 6, 10, 12, 16) (7, 11, 13, 17, 19, 23)
7 20 (0, 2, 6, 8, 12, 18, 20)
(0, 2, 8, 12, 14, 18, 20)
(11, 13, 17, 19, 23, 29, 31)
(5639, 5641, 5647, 5651, 5653, 5657, 5659)
8 26 (0, 2, 6, 8, 12, 18, 20, 26)
(0, 2, 6, 12, 14, 20, 24, 26)
(0, 6, 8, 14, 18, 20, 24, 26)
(11, 13, 17, 19, 23, 29, 31, 37)
(17, 19, 23, 29, 31, 37, 41, 43)
(88793, 88799, 88801, 88807, 88811, 88813, 88817, 88819)
9 30 (0, 2, 6, 8, 12, 18, 20, 26, 30)
(0, 4, 6, 10, 16, 18, 24, 28, 30)
(0, 2, 6, 12, 14, 20, 24, 26, 30)
(0, 4, 10, 12, 18, 22, 24, 28, 30)
(11, 13, 17, 19, 23, 29, 31, 37, 41)
(13, 17, 19, 23, 29, 31, 37, 41, 43)
(17, 19, 23, 29, 31, 37, 41, 43, 47)
(88789, 88793, 88799, 88801, 88807, 88811, 88813, 88817, 88819)

The diameter d as a function of k is sequence A008407 in the OEIS.

A prime constellation is sometimes referred to as a prime k-tuplet, but some authors reserve that term for instances that are not part of longer k-tuplets.

The first Hardy–Littlewood conjecture predicts that the asymptotic frequency of any prime constellation can be calculated. While the conjecture is unproven it is considered likely to be true. If that is the case, it implies that the second Hardy–Littlewood conjecture, in contrast, is false.

Prime arithmetic progressions

[edit]
Main article: Primes in arithmetic progression

A prime k-tuple of the form (0, n, 2n, 3n, …, (k − 1)n) is said to be a prime arithmetic progression. In order for such a k-tuple to meet the admissibility test, n must be a multiple of the primorial of k.[6]

Skewes numbers

[edit]

The Skewes numbers for prime k-tuples are an extension of the definition of Skewes's number to prime k-tuples based on the first Hardy–Littlewood conjecture (Tóth (2019)). Let P = ( p ,   p + i 1 ,   p + i 2 ,   …   ,   p + i k ) {\displaystyle P=(p,\ p+i_{1},\ p+i_{2},\ \dots \ ,\ p+i_{k})} {\displaystyle P=(p,\ p+i_{1},\ p+i_{2},\ \dots \ ,\ p+i_{k})} denote a prime k-tuple, π P ( x ) {\displaystyle \pi _{P}(x)} {\displaystyle \pi _{P}(x)} the number of primes p below x such that p ,   p + i 1 ,   p + i 2 ,   …   ,   p + i k {\displaystyle p,\ p+i_{1},\ p+i_{2},\ \dots \ ,\ p+i_{k}} {\displaystyle p,\ p+i_{1},\ p+i_{2},\ \dots \ ,\ p+i_{k}} are all prime, let li P ⁡ ( x ) = ∫ 2 x d t ( ln ⁡ t ) k + 1 {\textstyle \operatorname {li} _{P}(x)=\int _{2}^{x}{\frac {dt}{(\ln t)^{k+1}}}} {\textstyle \operatorname {li} _{P}(x)=\int _{2}^{x}{\frac {dt}{(\ln t)^{k+1}}}} and let C P {\displaystyle C_{P}} {\displaystyle C_{P}} denote its Hardy–Littlewood constant (see first Hardy–Littlewood conjecture). Then the first prime p that violates the Hardy–Littlewood inequality for the k-tuple P, i.e., such that

π P ( p ) > C P li P ⁡ ( p ) , {\displaystyle \pi _{P}(p)>C_{P}\operatorname {li} _{P}(p),} {\displaystyle \pi _{P}(p)>C_{P}\operatorname {li} _{P}(p),}

(if such a prime exists) is the Skewes number for P.

The table below shows the currently known Skewes numbers for prime k-tuples:

Prime k-tuple Skewes number Found by
⁠ ( p ,   p + 2 ) {\displaystyle (p,\ p+2)} {\displaystyle (p,\ p+2)}⁠ 1369391 Wolf (2011)
⁠ ( p ,   p + 4 ) {\displaystyle (p,\ p+4)} {\displaystyle (p,\ p+4)}⁠ 5206837 Tóth (2019)
⁠ ( p ,   p + 2 ,   p + 6 ) {\displaystyle (p,\ p+2,\ p+6)} {\displaystyle (p,\ p+2,\ p+6)}⁠ 87613571 Tóth (2019)
⁠ ( p ,   p + 4 ,   p + 6 ) {\displaystyle (p,\ p+4,\ p+6)} {\displaystyle (p,\ p+4,\ p+6)}⁠ 337867 Tóth (2019)
⁠ ( p ,   p + 2 ,   p + 6 ,   p + 8 ) {\displaystyle (p,\ p+2,\ p+6,\ p+8)} {\displaystyle (p,\ p+2,\ p+6,\ p+8)}⁠ 1172531 Tóth (2019)
⁠ ( p ,   p + 4 ,   p + 6 ,   p + 10 ) {\displaystyle (p,\ p+4,\ p+6,\ p+10)} {\displaystyle (p,\ p+4,\ p+6,\ p+10)}⁠ 827929093 Tóth (2019)
⁠ ( p ,   p + 2 ,   p + 6 ,   p + 8 ,   p + 12 ) {\displaystyle (p,\ p+2,\ p+6,\ p+8,\ p+12)} {\displaystyle (p,\ p+2,\ p+6,\ p+8,\ p+12)}⁠ 21432401 Tóth (2019)
⁠ ( p ,   p + 4 ,   p + 6 ,   p + 10 ,   p + 12 ) {\displaystyle (p,\ p+4,\ p+6,\ p+10,\ p+12)} {\displaystyle (p,\ p+4,\ p+6,\ p+10,\ p+12)}⁠ 216646267 Tóth (2019)
⁠ ( p ,   p + 4 ,   p + 6 ,   p + 10 ,   p + 12 ,   p + 16 ) {\displaystyle (p,\ p+4,\ p+6,\ p+10,\ p+12,\ p+16)} {\displaystyle (p,\ p+4,\ p+6,\ p+10,\ p+12,\ p+16)}⁠ 251331775687 Tóth (2019)
⁠ ( p ,   p + 2 ,   p + 6 ,   p + 8 ,   p + 12 ,   p + 18 ,   p + 20 ) {\displaystyle (p,\ p+2,\ p+6,\ p+8,\ p+12,\ p+18,\ p+20)} {\displaystyle (p,\ p+2,\ p+6,\ p+8,\ p+12,\ p+18,\ p+20)}⁠ 7572964186421 Pfoertner (2020)
⁠ ( p ,   p + 2 ,   p + 8 ,   p + 12 ,   p + 14 ,   p + 18 ,   p + 20 ) {\displaystyle (p,\ p+2,\ p+8,\ p+12,\ p+14,\ p+18,\ p+20)} {\displaystyle (p,\ p+2,\ p+8,\ p+12,\ p+14,\ p+18,\ p+20)}⁠ 214159878489239 Pfoertner (2020)
⁠ ( p ,   p + 2 ,   p + 6 ,   p + 8 ,   p + 12 ,   p + 18 ,   p + 20 ,   p + 26 ) {\displaystyle (p,\ p+2,\ p+6,\ p+8,\ p+12,\ p+18,\ p+20,\ p+26)} {\displaystyle (p,\ p+2,\ p+6,\ p+8,\ p+12,\ p+18,\ p+20,\ p+26)}⁠ 1203255673037261 Pfoertner / Luhn (2021)
⁠ ( p ,   p + 2 ,   p + 6 ,   p + 12 ,   p + 14 ,   p + 20 ,   p + 24 ,   p + 26 ) {\displaystyle (p,\ p+2,\ p+6,\ p+12,\ p+14,\ p+20,\ p+24,\ p+26)} {\displaystyle (p,\ p+2,\ p+6,\ p+12,\ p+14,\ p+20,\ p+24,\ p+26)}⁠ 523250002674163757 Pfoertner / Luhn (2021)
⁠ ( p ,   p + 6 ,   p + 8 ,   p + 14 ,   p + 18 ,   p + 20 ,   p + 24 ,   p + 26 ) {\displaystyle (p,\ p+6,\ p+8,\ p+14,\ p+18,\ p+20,\ p+24,\ p+26)} {\displaystyle (p,\ p+6,\ p+8,\ p+14,\ p+18,\ p+20,\ p+24,\ p+26)}⁠ 750247439134737983 Pfoertner / Luhn (2021)

The Skewes number (if it exists) for sexy primes ⁠ ( p , p + 6 ) {\displaystyle (p,\;p+6)} {\displaystyle (p,\;p+6)}⁠ is still unknown.

References

[edit]
  1. ^ Chris Caldwell, "The Prime Glossary: k-tuple" at The Prime Pages.
  2. ^ Polymath, D. H. J. (2014). "Variants of the Selberg sieve, and bounded intervals containing many primes". Research in the Mathematical Sciences. 1 12. arXiv:1407.4897. doi:10.1186/s40687-014-0012-7. MR 3373710.
  3. ^ Fernando, Ravi (7 March 2015). "How many distinct translates of a (non-admissible) set H can consist entirely of primes?". Mathematics StackExchange.[user-generated source]
  4. ^ Weisstein, Eric W. "Prime Constellation". MathWorld.
  5. ^ Norman Luhn, "The big database of 'the smallest prime k-tuplets' ".
  6. ^ Weisstein, Eric W. "Prime Arithmetic Progression". MathWorld.
  • Tóth, László (2019), "On The Asymptotic Density Of Prime k-tuples and a Conjecture of Hardy and Littlewood" (PDF), Computational Methods in Science and Technology, 25 (3), arXiv:1910.02636, doi:10.12921/cmst.2019.0000033, S2CID 203836016.
  • Wolf, Marek (2011), "The Skewes number for twin primes: counting sign changes of π2(x) − C2Li2(x)" (PDF), Computational Methods in Science and Technology, 17: 87–92, arXiv:1107.2809, doi:10.12921/cmst.2011.17.01.87-92, S2CID 59578795.
  • v
  • t
  • e
Prime number classes
By formula
  • Fermat (22n + 1)
  • Mersenne (2p − 1)
  • Double Mersenne (22p−1 − 1)
  • Wagstaff (2p + 1)/3
  • Proth (k·2n + 1)
  • Factorial (n! ± 1)
  • Primorial (pn# ± 1)
  • Euclid (pn# + 1)
  • Pythagorean (4n + 1)
  • Pierpont (2m·3n + 1)
  • Quartan (x4 + y4)
  • Solinas (2m ± 2n ± 1)
  • Cullen (n·2n + 1)
  • Woodall (n·2n − 1)
  • Cuban (x3 − y3)/(x − y)
  • Leyland (xy + yx)
  • Thabit (3·2n − 1)
  • Williams ((b−1)·bn − 1)
  • Mills (⌊A3n⌋)
By integer sequence
  • Fibonacci
  • Lucas
  • Pell
  • Newman–Shanks–Williams
  • Perrin
By property
  • Wieferich (pair)
  • Wall–Sun–Sun
  • Wolstenholme
  • Wilson
  • Lucky
  • Fortunate
  • Ramanujan
  • Pillai
  • Regular
  • Strong
  • Stern
  • Supersingular (elliptic curve)
  • Supersingular (moonshine theory)
  • Good
  • Super
  • Higgs
  • Highly cototient
  • Unique
Base-dependent
  • Palindromic
  • Emirp
  • Repunit (10n − 1)/9
  • Permutable
  • Circular
  • Truncatable
  • Minimal
  • Delicate
  • Primeval
  • Full reptend
  • Unique
  • Happy
  • Self
  • Smarandache–Wellin
  • Strobogrammatic
  • Dihedral
  • Tetradic
Patterns
k-tuples
  • Twin (p, p + 2)
  • Triplet (p, p + 2 or p + 4, p + 6)
  • Quadruplet (p, p + 2, p + 6, p + 8)
  • Cousin (p, p + 4)
  • Sexy (p, p + 6)
  • Arithmetic progression (p + a·n, n = 0, 1, 2, 3, ...)
  • Balanced (consecutive p − n, p, p + n)
  • Bi-twin chain (n ± 1, 2n ± 1, 4n ± 1, …)
  • Chen
  • Sophie Germain/Safe (p, 2p + 1)
  • Cunningham (p, 2p ± 1, 4p ± 3, 8p ± 7, ...)
By size
  • List of the first 1000 prime numbers
  • Mega (million+ digits)
  • Largest known
    • list
  • Complex numbers
    • Eisenstein prime
    • Gaussian prime
    Composite numbers
    • Pseudoprime
      • Catalan
      • Elliptic
      • Euler
      • Euler–Jacobi
      • Fermat
      • Frobenius
      • Lucas
      • Perrin
      • Somer–Lucas
      • Strong
    • Carmichael number
    • Almost prime
    • Semiprime
    • Sphenic number
    • Interprime
    • Pernicious
    Related topics
    • Probable prime
    • Industrial-grade prime
    • Illegal prime
    • Formula for primes
    • Prime gap
    First 60 primes
    • 2
    • 3
    • 5
    • 7
    • 11
    • 13
    • 17
    • 19
    • 23
    • 29
    • 31
    • 37
    • 41
    • 43
    • 47
    • 53
    • 59
    • 61
    • 67
    • 71
    • 73
    • 79
    • 83
    • 89
    • 97
    • 101
    • 103
    • 107
    • 109
    • 113
    • 127
    • 131
    • 137
    • 139
    • 149
    • 151
    • 157
    • 163
    • 167
    • 173
    • 179
    • 181
    • 191
    • 193
    • 197
    • 199
    • 211
    • 223
    • 227
    • 229
    • 233
    • 239
    • 241
    • 251
    • 257
    • 263
    • 269
    • 271
    • 277
    • 281
    List of prime numbers
    Retrieved from "https://teknopedia.ac.id/w/index.php?title=Prime_k-tuple&oldid=1333052540"
    Category:
    • Prime numbers
    Hidden categories:
    • Accuracy disputes from January 2026
    • Articles with short description
    • Short description is different from Wikidata

    • indonesia
    • Polski
    • العربية
    • Deutsch
    • English
    • Español
    • Français
    • Italiano
    • مصرى
    • Nederlands
    • 日本語
    • Português
    • Sinugboanong Binisaya
    • Svenska
    • Українська
    • Tiếng Việt
    • Winaray
    • 中文
    • Русский
    Sunting pranala
    url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url
    Pusat Layanan

    UNIVERSITAS TEKNOKRAT INDONESIA | ASEAN's Best Private University
    Jl. ZA. Pagar Alam No.9 -11, Labuhan Ratu, Kec. Kedaton, Kota Bandar Lampung, Lampung 35132
    Phone: (0721) 702022
    Email: pmb@teknokrat.ac.id