Epstein Files Full PDF

CLICK HERE
Technopedia Center
PMB University Brochure
Faculty of Engineering and Computer Science
S1 Informatics S1 Information Systems S1 Information Technology S1 Computer Engineering S1 Electrical Engineering S1 Civil Engineering

faculty of Economics and Business
S1 Management S1 Accountancy

Faculty of Letters and Educational Sciences
S1 English literature S1 English language education S1 Mathematics education S1 Sports Education
teknopedia

  • Registerasi
  • Brosur UTI
  • Kip Scholarship Information
  • Performance
Flag Counter
  1. World Encyclopedia
  2. Addition reaction - Wikipedia
Addition reaction - Wikipedia
From Wikipedia, the free encyclopedia
Organic reaction in which 2+ molecules combine to form a larger one

In organic chemistry, an addition reaction is an organic reaction in which two or more molecules combine to form a larger molecule called the adduct.[1][2]

An addition reaction is limited to chemical compounds that have multiple bonds. Examples include a molecule with a carbon–carbon double bond (an alkene) or a triple bond (an alkyne). Another example is a compound that has rings (which are also considered points of unsaturation). A molecule that has carbon—heteroatom double bonds, such as a carbonyl group (C=O) or imine group (C=N), can undergo an addition reaction because its double-bond.

An addition reaction is the reverse of an elimination reaction, in which one molecule divides into two or more molecules. For instance, the hydration of an alkene to an alcohol is reversed by dehydration.

There are two main types of polar addition reactions: electrophilic addition and nucleophilic addition. Two non-polar addition reactions exist as well, called free-radical addition and cycloadditions. Addition reactions are also encountered in polymerizations and called addition polymerization.

General overview of addition reactions. Top to bottom: electrophilic addition to alkene, nucleophilic addition of nucleophile to carbonyl and free-radical addition of halide to alkene

Depending on the product structure, it could promptly react further to eject a leaving group to give the addition–elimination reaction sequence.

Addition reactions are useful in analytic chemistry, as they can identify the existence and number of double bonds in a molecule. For example, bromine addition will consume a bromine solution, resulting in a color change:

RR ′ C = CR ″ R ‴ + Br 2 ( orange − brown ) → CCl 4 RR ′ CBr − BrCR ″ R ‴ ( typically   colorless ) {\displaystyle {\ce {RR'C=CR''R'''+Br2(orange-brown)->[{\ce {CCl4}}]RR'CBr-BrCR''R'''(typically\ colorless)}}} {\displaystyle {\mathrm {RR} {\vphantom {A}}^{\prime }\mathrm {C} {=}\mathrm {CR} {\vphantom {A}}^{\prime \prime }\mathrm {R} {\vphantom {A}}^{\prime \prime \prime }{}+{}\mathrm {Br} {\vphantom {A}}_{\smash[{t}]{2}}(\mathrm {orange} {-}\mathrm {brown} ){}\mathrel {\xrightarrow {\mathrm {CCl} {\vphantom {A}}_{\smash[{t}]{4}}} } {}\mathrm {RR} {\vphantom {A}}^{\prime }\mathrm {CBr} {-}\mathrm {BrCR} {\vphantom {A}}^{\prime \prime }\mathrm {R} {\vphantom {A}}^{\prime \prime \prime }(\mathrm {typically} \ \mathrm {colorless} )}}

Likewise hydrogen addition often proceeds on all double-bonds of a molecule, and thus gives a count of the number of a double and triple bonds through stoichiometry:

( H 2 C = CH ) 2 + 2 H 2 → Pt / Pd ( H 3 C − CH 2 ) 2 {\displaystyle {\ce {{(H2C=CH)2}+ 2H2 ->[{\ce {Pt}}/{\ce {Pd}}] (H3C-CH2)2}}} {\displaystyle {{\text{(H2C=CH)2}}{}+{}2\,\mathrm {H} {\vphantom {A}}_{\smash[{t}]{2}}{}\mathrel {\xrightarrow {\mathrm {Pt} /\mathrm {Pd} } } {}(\mathrm {H} {\vphantom {A}}_{\smash[{t}]{3}}\mathrm {C} {-}\mathrm {CH} {\vphantom {A}}_{\smash[{t}]{2}}){\vphantom {A}}_{\smash[{t}]{2}}}}

References

[edit]
  1. ^ Morrison, R. T.; Boyd, R. N. (1983). Organic Chemistry (4th ed.). Boston: Allyn and Bacon. ISBN 0-205-05838-8.
  2. ^ March, Jerry (1985). Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (3rd ed.). New York: Wiley. ISBN 9780471854722. OCLC 642506595..

External links

[edit]
  • Quotations related to Addition reaction at Wikiquote
  • v
  • t
  • e
Basic reaction mechanisms
Nucleophilic substitutions
  • Unimolecular nucleophilic substitution (SN1)
  • Bimolecular nucleophilic substitution (SN2)
  • Nucleophilic internal substitution (SNi)
  • Nucleophilic acyl substitution (SNAcyl)
Electrophilic substitutions
  • Electrophilic aromatic substitution (SEAr)
Elimination reactions
  • E1cB-elimination
  • Ei elimination
Addition reactions
  • Electrophilic addition (AE)
  • Nucleophilic addition (AN)
  • Free-radical addition
  • Cycloaddition
  • Oxidative addition
Unimolecular reactions
  • Intramolecular reaction
  • Isomerization
  • Photodissociation
  • Lindemann mechanism
  • RRKM theory
Electron/Proton transfer reactions
  • Redox
  • Harpoon reaction
  • Grotthuss mechanism
  • Marcus theory
  • Inner sphere electron transfer
  • Outer sphere electron transfer
Medium effects
  • Solvent effects
  • Cage effect
  • Matrix isolation
Related topics
  • Elementary reaction
  • Reaction dynamics
  • Reactive intermediate
  • Radical (chemistry)
  • Molecularity
  • Stereochemistry
  • Catalysis
  • Collision theory
  • Arrow pushing
  • Potential energy surface
  • More O'Ferrall–Jencks plot
Chemical kinetics
  • Rate equation
  • Equilibrium constant
  • Rate-determining step
  • Reaction coordinate
  • Energy profile (chemistry)
  • Transition state theory
  • Activation energy
  • Activated complex
  • Arrhenius equation
  • Eyring equation
  • Michaelis–Menten kinetics
  • Diffusion-controlled reaction
  • v
  • t
  • e
Topics in organic reactions
  • Addition reaction
  • Elimination reaction
  • Polymerization
  • Reagents
  • Rearrangement reaction
  • Redox reaction
  • Regioselectivity
  • Stereoselectivity
  • Stereospecificity
  • Substitution reaction
  • A value
  • Alpha effect
  • Annulene
  • Anomeric effect
  • Antiaromaticity
  • Aromatic ring current
  • Aromaticity
  • Baird's rule
  • Baker–Nathan effect
  • Baldwin's rules
  • Bema Hapothle
  • Beta-silicon effect
  • Bicycloaromaticity
  • Bredt's rule
  • Bürgi–Dunitz angle
  • Catalytic resonance theory
  • Charge remote fragmentation
  • Charge-transfer complex
  • Clar's rule
  • Conformational isomerism
  • Conjugated system
  • Conrotatory and disrotatory
  • Curtin–Hammett principle
  • Dynamic binding (chemistry)
  • Edwards equation
  • Effective molarity
  • Electromeric effect
  • Electron-rich
  • Electron-withdrawing group
  • Electronic effect
  • Electrophile
  • Evelyn effect
  • Flippin–Lodge angle
  • Free-energy relationship
  • Grunwald–Winstein equation
  • Hammett acidity function
  • Hammett equation
  • George S. Hammond
  • Hammond's postulate
  • Homoaromaticity
  • Hückel's rule
  • Hyperconjugation
  • Inductive effect
  • Kinetic isotope effect
  • LFER solvent coefficients (data page)
  • Marcus theory
  • Markovnikov's rule
  • Möbius aromaticity
  • Möbius–Hückel concept
  • More O'Ferrall–Jencks plot
  • Negative hyperconjugation
  • Neighbouring group participation
  • 2-Norbornyl cation
  • Nucleophile
  • Kennedy J. P. Orton
  • Passive binding
  • Phosphaethynolate
  • Polar effect
  • Polyfluorene
  • Ring strain
  • Σ-aromaticity
  • Spherical aromaticity
  • Spiroaromaticity
  • Steric effects
  • Superaromaticity
  • Swain–Lupton equation
  • Taft equation
  • Thorpe–Ingold effect
  • Vinylogy
  • Walsh diagram
  • Woodward–Hoffmann rules
  • Woodward's rules
  • Y-aromaticity
  • Yukawa–Tsuno equation
  • Zaitsev's rule
  • Σ-bishomoaromaticity
List of organic reactions
Carbon-carbon
bond forming
reactions
  • Acetoacetic ester synthesis
  • Acyloin condensation
  • Aldol condensation
  • Aldol reaction
  • Alkane metathesis
  • Alkyne metathesis
  • Alkyne trimerisation
  • Alkynylation
  • Allan–Robinson reaction
  • Arndt–Eistert reaction
  • Auwers synthesis
  • Aza-Baylis–Hillman reaction
  • Barbier reaction
  • Barton–Kellogg reaction
  • Baylis–Hillman reaction
  • Benary reaction
  • Bergman cyclization
  • Biginelli reaction
  • Bingel reaction
  • Blaise ketone synthesis
  • Blaise reaction
  • Blanc chloromethylation
  • Bodroux–Chichibabin aldehyde synthesis
  • Bouveault aldehyde synthesis
  • Bucherer–Bergs reaction
  • Buchner ring expansion
  • Cadiot–Chodkiewicz coupling
  • Carbonyl allylation
  • Carbonyl olefin metathesis
  • Castro–Stephens coupling
  • Chan rearrangement
  • Chan–Lam coupling
  • Claisen condensation
  • Claisen rearrangement
  • Claisen-Schmidt condensation
  • Combes quinoline synthesis
  • Corey–Fuchs reaction
  • Corey–House synthesis
  • Coupling reaction
  • Cross-coupling reaction
  • Cross dehydrogenative coupling
  • Cross-coupling partner
  • Dakin–West reaction
  • Darzens reaction
  • Diels–Alder reaction
  • Doebner reaction
  • Wulff–Dötz reaction
  • Ene reaction
  • Enyne metathesis
  • Ethenolysis
  • Favorskii reaction
  • Ferrier carbocyclization
  • Friedel–Crafts reaction
  • Fujimoto–Belleau reaction
  • Fujiwara–Moritani reaction
  • Fukuyama coupling
  • Gabriel–Colman rearrangement
  • Gattermann reaction
  • Glaser coupling
  • Grignard reaction
  • Grignard reagent
  • Hammick reaction
  • Heck reaction
  • Henry reaction
  • Heterogeneous metal catalyzed cross-coupling
  • High dilution principle
  • Hiyama coupling
  • Homologation reaction
  • Horner–Wadsworth–Emmons reaction
  • Hydrocyanation
  • Hydrovinylation
  • Hydroxymethylation
  • Ivanov reaction
  • Johnson–Corey–Chaykovsky reaction
  • Julia olefination
  • Julia–Kocienski olefination
  • Kauffmann olefination
  • Knoevenagel condensation
  • Knorr pyrrole synthesis
  • Kolbe–Schmitt reaction
  • Kowalski ester homologation
  • Kulinkovich reaction
  • Kumada coupling
  • Liebeskind–Srogl coupling
  • Malonic ester synthesis
  • Mannich reaction
  • McMurry reaction
  • Meerwein arylation
  • Methylenation
  • Michael reaction
  • Minisci reaction
  • Mizoroki-Heck vs. Reductive Heck
  • Nef isocyanide reaction
  • Nef synthesis
  • Negishi coupling
  • Nierenstein reaction
  • Nitro-Mannich reaction
  • Nozaki–Hiyama–Kishi reaction
  • Olefin conversion technology
  • Olefin metathesis
  • Palladium–NHC complex
  • Passerini reaction
  • Peterson olefination
  • Pfitzinger reaction
  • Piancatelli rearrangement
  • Pinacol coupling reaction
  • Prins reaction
  • Quelet reaction
  • Ramberg–Bäcklund reaction
  • Rauhut–Currier reaction
  • Reformatsky reaction
  • Reimer–Tiemann reaction
  • Rieche formylation
  • Ring-closing metathesis
  • Robinson annulation
  • Sakurai reaction
  • Seyferth–Gilbert homologation
  • Shapiro reaction
  • Sonogashira coupling
  • Stetter reaction
  • Stille reaction
  • Stollé synthesis
  • Stork enamine alkylation
  • Suzuki reaction
  • Takai olefination
  • Thermal rearrangement of aromatic hydrocarbons
  • Thorpe reaction
  • Ugi reaction
  • Ullmann reaction
  • Wagner-Jauregg reaction
  • Weinreb ketone synthesis
  • Wittig reaction
  • Wurtz reaction
  • Wurtz–Fittig reaction
  • Zincke–Suhl reaction
Homologation reactions
  • Arndt–Eistert reaction
  • Hooker reaction
  • Kiliani–Fischer synthesis
  • Kowalski ester homologation
  • Methoxymethylenetriphenylphosphorane
  • Seyferth–Gilbert homologation
  • Wittig reaction
Olefination reactions
  • Bamford–Stevens reaction
  • Barton–Kellogg reaction
  • Boord olefin synthesis
  • Chugaev elimination
  • Cope reaction
  • Corey–Winter olefin synthesis
  • Dehydrohalogenation
  • Elimination reaction
  • Grieco elimination
  • Hofmann elimination
  • Horner–Wadsworth–Emmons reaction
  • Hydrazone iodination
  • Julia olefination
  • Julia–Kocienski olefination
  • Kauffmann olefination
  • McMurry reaction
  • Peterson olefination
  • Ramberg–Bäcklund reaction
  • Shapiro reaction
  • Takai olefination
  • Wittig reaction
Carbon-heteroatom
bond forming
reactions
  • Azo coupling
  • Bartoli indole synthesis
  • Boudouard reaction
  • Cadogan–Sundberg indole synthesis
  • Diazonium compound
  • Esterification
  • Grignard reagent
  • Haloform reaction
  • Hegedus indole synthesis
  • Hurd–Mori 1,2,3-thiadiazole synthesis
  • Kharasch–Sosnovsky reaction
  • Knorr pyrrole synthesis
  • Leimgruber–Batcho indole synthesis
  • Mukaiyama hydration
  • Nenitzescu indole synthesis
  • Oxymercuration reaction
  • Reed reaction
  • Schotten–Baumann reaction
  • Ullmann condensation
  • Williamson ether synthesis
  • Yamaguchi esterification
Degradation
reactions
  • Barbier–Wieland degradation
  • Bergmann degradation
  • Edman degradation
  • Emde degradation
  • Gallagher–Hollander degradation
  • Hofmann rearrangement
  • Hooker reaction
  • Isosaccharinic acid
  • Marker degradation
  • Ruff degradation
  • Strecker degradation
  • Von Braun amide degradation
  • Weerman degradation
  • Wohl degradation
Organic redox
reactions
  • Acyloin condensation
  • Adkins–Peterson reaction
  • Akabori amino-acid reaction
  • Alcohol oxidation
  • Algar–Flynn–Oyamada reaction
  • Amide reduction
  • Andrussow process
  • Angeli–Rimini reaction
  • Aromatization
  • Autoxidation
  • Baeyer–Villiger oxidation
  • Barton–McCombie deoxygenation
  • Bechamp reduction
  • Benkeser reaction
  • Bergmann degradation
  • Birch reduction
  • Bohn–Schmidt reaction
  • Bosch reaction
  • Bouveault–Blanc reduction
  • Boyland–Sims oxidation
  • Cannizzaro reaction
  • Carbonyl reduction
  • Clemmensen reduction
  • Collins oxidation
  • Corey–Itsuno reduction
  • Corey–Kim oxidation
  • Corey–Winter olefin synthesis
  • Criegee oxidation
  • Dakin oxidation
  • Davis oxidation
  • Deoxygenation
  • Dess–Martin oxidation
  • DNA oxidation
  • Elbs persulfate oxidation
  • Emde degradation
  • Eschweiler–Clarke reaction
  • Étard reaction
  • Fischer–Tropsch process
  • Fleming–Tamao oxidation
  • Fukuyama reduction
  • Ganem oxidation
  • Glycol cleavage
  • Griesbaum coozonolysis
  • Grundmann aldehyde synthesis
  • Haloform reaction
  • Hydrogenation
  • Hydrogenolysis
  • Hydroxylation
  • Jones oxidation
  • Kiliani–Fischer synthesis
  • Kolbe electrolysis
  • Kornblum oxidation
  • Kornblum–DeLaMare rearrangement
  • Leuckart reaction
  • Ley oxidation
  • Lindgren oxidation
  • Lipid peroxidation
  • Lombardo methylenation
  • Luche reduction
  • Markó–Lam deoxygenation
  • McFadyen–Stevens reaction
  • Meerwein–Ponndorf–Verley reduction
  • Methionine sulfoxide
  • Miyaura borylation
  • Mozingo reduction
  • Noyori asymmetric hydrogenation
  • Omega oxidation
  • Oppenauer oxidation
  • Oxygen rebound mechanism
  • Ozonolysis
  • Parikh–Doering oxidation
  • Pinnick oxidation
  • Prévost reaction
  • Reduction of nitro compounds
  • Reductive amination
  • Riley oxidation
  • Rosenmund reduction
  • Rubottom oxidation
  • Sabatier reaction
  • Sarett oxidation
  • Selenoxide elimination
  • Shapiro reaction
  • Sharpless asymmetric dihydroxylation
  • Epoxidation of allylic alcohols
  • Sharpless epoxidation
  • Sharpless oxyamination
  • Stahl oxidation
  • Staudinger reaction
  • Stephen aldehyde synthesis
  • Swern oxidation
  • Transfer hydrogenation
  • Wacker process
  • Wharton reaction
  • Whiting reaction
  • Wohl–Aue reaction
  • Wolff–Kishner reduction
  • Wolffenstein–Böters reaction
  • Zinin reaction
Rearrangement
reactions
  • 1,2-rearrangement
  • 1,2-Wittig rearrangement
  • 2,3-sigmatropic rearrangement
  • 2,3-Wittig rearrangement
  • Achmatowicz reaction
  • Alkyne zipper reaction
  • Allen–Millar–Trippett rearrangement
  • Allylic rearrangement
  • Alpha-ketol rearrangement
  • Amadori rearrangement
  • Arndt–Eistert reaction
  • Aza-Cope rearrangement
  • Baker–Venkataraman rearrangement
  • Bamberger rearrangement
  • Banert cascade
  • Beckmann rearrangement
  • Benzilic acid rearrangement
  • Bergman cyclization
  • Bergmann degradation
  • Boekelheide reaction
  • Brook rearrangement
  • Buchner ring expansion
  • Carroll rearrangement
  • Chan rearrangement
  • Claisen rearrangement
  • Cope rearrangement
  • Corey–Fuchs reaction
  • Cornforth rearrangement
  • Criegee rearrangement
  • Curtius rearrangement
  • Demjanov rearrangement
  • Di-π-methane rearrangement
  • Dimroth rearrangement
  • Divinylcyclopropane-cycloheptadiene rearrangement
  • Dowd–Beckwith ring-expansion reaction
  • Electrocyclic reaction
  • Ene reaction
  • Enyne metathesis
  • Favorskii reaction
  • Favorskii rearrangement
  • Ferrier carbocyclization
  • Ferrier rearrangement
  • Fischer–Hepp rearrangement
  • Fries rearrangement
  • Fritsch–Buttenberg–Wiechell rearrangement
  • Gabriel–Colman rearrangement
  • Group transfer reaction
  • Halogen dance rearrangement
  • Hayashi rearrangement
  • Hofmann rearrangement
  • Hofmann–Martius rearrangement
  • Ireland–Claisen rearrangement
  • Jacobsen rearrangement
  • Kornblum–DeLaMare rearrangement
  • Kowalski ester homologation
  • Lobry de Bruyn–Van Ekenstein transformation
  • Lossen rearrangement
  • McFadyen–Stevens reaction
  • McLafferty rearrangement
  • Meyer–Schuster rearrangement
  • Mislow–Evans rearrangement
  • Mumm rearrangement
  • Myers allene synthesis
  • Nazarov cyclization reaction
  • Neber rearrangement
  • Newman–Kwart rearrangement
  • Overman rearrangement
  • Oxy-Cope rearrangement
  • Pericyclic reaction
  • Piancatelli rearrangement
  • Pinacol rearrangement
  • Pummerer rearrangement
  • Ramberg–Bäcklund reaction
  • Ring expansion and contraction
  • Ring-closing metathesis
  • Rupe reaction
  • Schmidt reaction
  • Semipinacol rearrangement
  • Seyferth–Gilbert homologation
  • Sigmatropic reaction
  • Skattebøl rearrangement
  • Smiles rearrangement
  • Sommelet–Hauser rearrangement
  • Stevens rearrangement
  • Stieglitz rearrangement
  • Thermal rearrangement of aromatic hydrocarbons
  • Tiffeneau–Demjanov rearrangement
  • Vinylcyclopropane rearrangement
  • Wagner–Meerwein rearrangement
  • Wallach rearrangement
  • Weerman degradation
  • Westphalen–Lettré rearrangement
  • Willgerodt rearrangement
  • Wolff rearrangement
Ring forming
reactions
  • 1,3-Dipolar cycloaddition
  • Annulation
  • Azide-alkyne Huisgen cycloaddition
  • Baeyer–Emmerling indole synthesis
  • Bartoli indole synthesis
  • Bergman cyclization
  • Biginelli reaction
  • Bischler–Möhlau indole synthesis
  • Bischler–Napieralski reaction
  • Blum–Ittah aziridine synthesis
  • Bobbitt reaction
  • Bohlmann–Rahtz pyridine synthesis
  • Borsche–Drechsel cyclization
  • Bucherer carbazole synthesis
  • Bucherer–Bergs reaction
  • Cadogan–Sundberg indole synthesis
  • Camps quinoline synthesis
  • Chichibabin pyridine synthesis
  • Cook–Heilbron thiazole synthesis
  • Cycloaddition
  • Darzens reaction
  • Davis–Beirut reaction
  • De Kimpe aziridine synthesis
  • Debus–Radziszewski imidazole synthesis
  • Dieckmann condensation
  • Diels–Alder reaction
  • Feist–Benary synthesis
  • Ferrario–Ackermann reaction
  • Fiesselmann thiophene synthesis
  • Fischer indole synthesis
  • Fischer oxazole synthesis
  • Friedländer synthesis
  • Gewald reaction
  • Graham reaction
  • Hantzsch pyridine synthesis
  • Hegedus indole synthesis
  • Hemetsberger indole synthesis
  • Hofmann–Löffler reaction
  • Hurd–Mori 1,2,3-thiadiazole synthesis
  • Iodolactonization
  • Isay reaction
  • Jacobsen epoxidation
  • Johnson–Corey–Chaykovsky reaction
  • Knorr pyrrole synthesis
  • Knorr quinoline synthesis
  • Kröhnke pyridine synthesis
  • Kulinkovich reaction
  • Larock indole synthesis
  • Madelung synthesis
  • Nazarov cyclization reaction
  • Nenitzescu indole synthesis
  • Niementowski quinazoline synthesis
  • Niementowski quinoline synthesis
  • Paal–Knorr synthesis
  • Paternò–Büchi reaction
  • Pechmann condensation
  • Petrenko-Kritschenko piperidone synthesis
  • Pictet–Spengler reaction
  • Pomeranz–Fritsch reaction
  • Prilezhaev reaction
  • Pschorr cyclization
  • Reissert indole synthesis
  • Ring-closing metathesis
  • Robinson annulation
  • Sharpless epoxidation
  • Simmons–Smith reaction
  • Skraup reaction
  • Urech hydantoin synthesis
  • Van Leusen reaction
  • Wenker synthesis
Cycloaddition
  • 1,3-Dipolar cycloaddition
  • 4+4 Photocycloaddition
  • (4+3) cycloaddition
  • 6+4 Cycloaddition
  • Alkyne trimerisation
  • Aza-Diels–Alder reaction
  • Azide-alkyne Huisgen cycloaddition
  • Bradsher cycloaddition
  • Cheletropic reaction
  • Conia-ene reaction
  • Cyclopropanation
  • Diazoalkane 1,3-dipolar cycloaddition
  • Diels–Alder reaction
  • Enone–alkene cycloadditions
  • Hexadehydro Diels–Alder reaction
  • Intramolecular Diels–Alder cycloaddition
  • Inverse electron-demand Diels–Alder reaction
  • Ketene cycloaddition
  • McCormack reaction
  • Metal-centered cycloaddition reactions
  • Nitrone-olefin (3+2) cycloaddition
  • Oxo-Diels–Alder reaction
  • Ozonolysis
  • Pauson–Khand reaction
  • Povarov reaction
  • Prato reaction
  • Retro-Diels–Alder reaction
  • Staudinger synthesis
  • Trimethylenemethane cycloaddition
  • Vinylcyclopropane (5+2) cycloaddition
  • Wagner-Jauregg reaction
Heterocycle forming reactions
  • Algar–Flynn–Oyamada reaction
  • Allan–Robinson reaction
  • Auwers synthesis
  • Bamberger triazine synthesis
  • Banert cascade
  • Barton–Zard reaction
  • Bernthsen acridine synthesis
  • Bischler–Napieralski reaction
  • Bobbitt reaction
  • Boger pyridine synthesis
  • Borsche–Drechsel cyclization
  • Bucherer carbazole synthesis
  • Bucherer–Bergs reaction
  • Chichibabin pyridine synthesis
  • Cook–Heilbron thiazole synthesis
  • Diazoalkane 1,3-dipolar cycloaddition
  • Einhorn–Brunner reaction
  • Erlenmeyer–Plöchl azlactone and amino-acid synthesis
  • Feist–Benary synthesis
  • Fischer oxazole synthesis
  • Gabriel–Colman rearrangement
  • Gewald reaction
  • Hantzsch ester
  • Hantzsch pyridine synthesis
  • Herz reaction
  • Knorr pyrrole synthesis
  • Kröhnke pyridine synthesis
  • Lectka enantioselective beta-lactam synthesis
  • Lehmstedt–Tanasescu reaction
  • Niementowski quinazoline synthesis
  • Nitrone-olefin (3+2) cycloaddition
  • Paal–Knorr synthesis
  • Pellizzari reaction
  • Pictet–Spengler reaction
  • Pomeranz–Fritsch reaction
  • Prilezhaev reaction
  • Robinson–Gabriel synthesis
  • Stollé synthesis
  • Urech hydantoin synthesis
  • Wenker synthesis
  • Wohl–Aue reaction
Authority control databases Edit this at Wikidata
International
  • GND
National
  • United States
  • Czech Republic
  • Israel
Other
  • Yale LUX
Retrieved from "https://teknopedia.ac.id/w/index.php?title=Addition_reaction&oldid=1307452252"
Categories:
  • Addition reactions
  • Reaction mechanisms
Hidden categories:
  • Articles with short description
  • Short description is different from Wikidata
  • Pages that use a deprecated format of the chem tags

  • indonesia
  • Polski
  • العربية
  • Deutsch
  • English
  • Español
  • Français
  • Italiano
  • مصرى
  • Nederlands
  • 日本語
  • Português
  • Sinugboanong Binisaya
  • Svenska
  • Українська
  • Tiếng Việt
  • Winaray
  • 中文
  • Русский
Sunting pranala
url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url
Pusat Layanan

UNIVERSITAS TEKNOKRAT INDONESIA | ASEAN's Best Private University
Jl. ZA. Pagar Alam No.9 -11, Labuhan Ratu, Kec. Kedaton, Kota Bandar Lampung, Lampung 35132
Phone: (0721) 702022
Email: pmb@teknokrat.ac.id