Epstein Files Full PDF

CLICK HERE
Technopedia Center
PMB University Brochure
Faculty of Engineering and Computer Science
S1 Informatics S1 Information Systems S1 Information Technology S1 Computer Engineering S1 Electrical Engineering S1 Civil Engineering

faculty of Economics and Business
S1 Management S1 Accountancy

Faculty of Letters and Educational Sciences
S1 English literature S1 English language education S1 Mathematics education S1 Sports Education
teknopedia

  • Registerasi
  • Brosur UTI
  • Kip Scholarship Information
  • Performance
Flag Counter
  1. World Encyclopedia
  2. DSPACE - Wikipedia
DSPACE - Wikipedia
From Wikipedia, the free encyclopedia
Memory space for a deterministic Turing machine
For digital repositories, see DSpace.
icon
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "DSPACE" – news · newspapers · books · scholar · JSTOR
(October 2009) (Learn how and when to remove this message)

In computational complexity theory, DSPACE or SPACE is the computational resource describing the resource of memory space for a deterministic Turing machine. It represents the total amount of memory space that a "normal" physical computer would need to solve a given computational problem with a given algorithm.

Complexity classes

[edit]

The measure DSPACE is used to define complexity classes, sets of all of the decision problems that can be solved using a certain amount of memory space. For each function f(n), there is a complexity class SPACE(f(n)), the set of decision problems that can be solved by a deterministic Turing machine using space O(f(n)). There is no restriction on the amount of computation time that can be used, though there may be restrictions on some other complexity measures (like alternation).

Several important complexity classes are defined in terms of DSPACE. These include:

  • REG = DSPACE(O(1)), where REG is the class of regular languages. In fact, REG = DSPACE(o(log log n)) (that is, Ω(log log n) space is required to recognize any non-regular language).[1][2]

Proof: Suppose that there exists a non-regular language L ∈ DSPACE(s(n)), for s(n) = o(log log n). Let M be a Turing machine deciding L in space s(n). By our assumption L ∉ DSPACE(O(1)); thus, for any arbitrary k ∈ N {\displaystyle k\in \mathbb {N} } {\displaystyle k\in \mathbb {N} }, there exists an input of M requiring more space than k.

Let x be an input of smallest size, denoted by n, that requires more space than k, and C {\displaystyle {\mathcal {C}}} {\displaystyle {\mathcal {C}}} be the set of all configurations of M on input x. Because M ∈ DSPACE(s(n)), then | C | ≤ 2 c ⋅ s ( n ) = o ( log ⁡ n ) {\displaystyle |{\mathcal {C}}|\leq 2^{c\cdot s(n)}=o(\log n)} {\displaystyle |{\mathcal {C}}|\leq 2^{c\cdot s(n)}=o(\log n)}, where c is a constant depending on M.

Let S denote the set of all possible crossing sequences of M on x. Note that the length of a crossing sequence of M on x is at most | C | {\displaystyle |{\mathcal {C}}|} {\displaystyle |{\mathcal {C}}|}: if it is longer than that, then some configuration will repeat, and M will go into an infinite loop. There are also at most | C | {\displaystyle |{\mathcal {C}}|} {\displaystyle |{\mathcal {C}}|} possibilities for every element of a crossing sequence, so the number of different crossing sequences of M on x is

| S | ≤ | C | | C | ≤ ( 2 c ⋅ s ( n ) ) 2 c ⋅ s ( n ) = 2 c ⋅ s ( n ) ⋅ 2 c ⋅ s ( n ) < 2 2 2 c ⋅ s ( n ) = 2 2 o ( log ⁡ log ⁡ n ) = o ( n ) {\displaystyle |S|\leq |{\mathcal {C}}|^{|{\mathcal {C}}|}\leq (2^{c\cdot s(n)})^{2^{c\cdot s(n)}}=2^{c\cdot s(n)\cdot 2^{c\cdot s(n)}}<2^{2^{2c\cdot s(n)}}=2^{2^{o(\log \log n)}}=o(n)} {\displaystyle |S|\leq |{\mathcal {C}}|^{|{\mathcal {C}}|}\leq (2^{c\cdot s(n)})^{2^{c\cdot s(n)}}=2^{c\cdot s(n)\cdot 2^{c\cdot s(n)}}<2^{2^{2c\cdot s(n)}}=2^{2^{o(\log \log n)}}=o(n)}

According to pigeonhole principle, there exist indexes i < j such that C i ( x ) = C j ( x ) {\displaystyle {\mathcal {C}}_{i}(x)={\mathcal {C}}_{j}(x)} {\displaystyle {\mathcal {C}}_{i}(x)={\mathcal {C}}_{j}(x)}, where C i ( x ) {\displaystyle {\mathcal {C}}_{i}(x)} {\displaystyle {\mathcal {C}}_{i}(x)} and C j ( x ) {\displaystyle {\mathcal {C}}_{j}(x)} {\displaystyle {\mathcal {C}}_{j}(x)} are the crossing sequences at boundary i and j, respectively.

Let x' be the string obtained from x by removing all cells from i + 1 to j. The machine M still behaves exactly the same way on input x' as on input x, so it needs the same space to compute x' as to compute x. However, |x' | < |x|, contradicting the definition of x. Hence, there does not exist such a language L as assumed. □

The above theorem implies the necessity of the space-constructible function assumption in the space hierarchy theorem.

  • L = DSPACE(O(log n))
  • PSPACE = ⋃ k ∈ N D S P A C E ( n k ) {\displaystyle \bigcup _{k\in \mathbb {N} }{\mathsf {DSPACE}}(n^{k})} {\displaystyle \bigcup _{k\in \mathbb {N} }{\mathsf {DSPACE}}(n^{k})}
  • EXPSPACE = ⋃ k ∈ N D S P A C E ( 2 n k ) {\displaystyle \bigcup _{k\in \mathbb {N} }{\mathsf {DSPACE}}(2^{n^{k}})} {\displaystyle \bigcup _{k\in \mathbb {N} }{\mathsf {DSPACE}}(2^{n^{k}})}

Machine models

[edit]

DSPACE is traditionally measured on a deterministic Turing machine. Several important space complexity classes are sublinear, that is, smaller than the size of the input. Thus, "charging" the algorithm for the size of the input, or for the size of the output, would not truly capture the memory space used. This is solved by defining the multi-tape Turing machine with input and output, which is a standard multi-tape Turing machine, except that the input tape may never be written-to, and the output tape may never be read from. This allows smaller space classes, such as L (logarithmic space), to be defined in terms of the amount of space used by all of the work tapes (excluding the special input and output tapes).

Since many symbols might be packed into one by taking a suitable power of the alphabet, for all c ≥ 1 and f such that f(n) ≥ 1, the class of languages recognizable in cf(n) space is the same as the class of languages recognizable in f(n) space. This justifies usage of big O notation in the definition.

Hierarchy theorem

[edit]

The space hierarchy theorem shows that, for every space-constructible function f : N → N {\displaystyle f:\mathbb {N} \to \mathbb {N} } {\displaystyle f:\mathbb {N} \to \mathbb {N} }, there exists some language L that is decidable in space O ( f ( n ) ) {\displaystyle O(f(n))} {\displaystyle O(f(n))} but not in space o ( f ( n ) ) {\displaystyle o(f(n))} {\displaystyle o(f(n))}.

Further information: space hierarchy theorem

Relation with other complexity classes

[edit]

DSPACE is the deterministic counterpart of NSPACE, the class of memory space on a non-deterministic Turing machine. By Savitch's theorem,[3] we have that

D S P A C E ( s ( n ) ) ⊆ N S P A C E ( s ( n ) ) ⊆ D S P A C E ( ( s ( n ) ) 2 ) . {\displaystyle {\mathsf {DSPACE}}(s(n))\subseteq {\mathsf {NSPACE}}(s(n))\subseteq {\mathsf {DSPACE}}{\bigl (}(s(n))^{2}{\bigr )}.} {\displaystyle {\mathsf {DSPACE}}(s(n))\subseteq {\mathsf {NSPACE}}(s(n))\subseteq {\mathsf {DSPACE}}{\bigl (}(s(n))^{2}{\bigr )}.}

NTIME is related to DSPACE in the following way. For any time constructible function t(n), we have

N T I M E ( t ( n ) ) ⊆ D S P A C E ( t ( n ) ) {\displaystyle {\mathsf {NTIME}}(t(n))\subseteq {\mathsf {DSPACE}}(t(n))} {\displaystyle {\mathsf {NTIME}}(t(n))\subseteq {\mathsf {DSPACE}}(t(n))}.

A much better simulation is known for deterministic time: if t ( n ) ≥ n {\displaystyle t(n)\geq n} {\displaystyle t(n)\geq n},

D T I M E ( t ( n ) ) ⊆ D S P A C E ( t ( n ) log ⁡ t ( n ) ) {\displaystyle {\mathsf {DTIME}}(t(n))\subseteq {\mathsf {DSPACE}}\left({\sqrt {t(n)\log t(n)}}\right)} {\displaystyle {\mathsf {DTIME}}(t(n))\subseteq {\mathsf {DSPACE}}\left({\sqrt {t(n)\log t(n)}}\right)}

by a result of Williams,[4] improving an older bound of O ( t / log ⁡ t ) {\displaystyle O(t/\log t)} {\displaystyle O(t/\log t)} by Hopcroft, Paul, and Valiant.[5]

On the other hand, for any function s ( n ) ≥ log ⁡ n {\displaystyle s(n)\geq \log n} {\displaystyle s(n)\geq \log n},

D S P A C E ( s ( n ) ) ⊆ D T I M E ( 2 O ( s ( n ) ) ) {\displaystyle {\mathsf {DSPACE}}(s(n))\subseteq {\mathsf {DTIME}}{\bigl (}2^{O(s(n))}{\bigr )}} {\displaystyle {\mathsf {DSPACE}}(s(n))\subseteq {\mathsf {DTIME}}{\bigl (}2^{O(s(n))}{\bigr )}}.

References

[edit]
  1. ^ Szepietowski (1994) p. 28
  2. ^ Alberts, Maris (1985), Space complexity of alternating Turing machines
  3. ^ Arora & Barak (2009) p. 86
  4. ^ Ryan Williams, R. (2025-06-15). "Simulating Time with Square-Root Space". Proceedings of the 57th Annual ACM Symposium on Theory of Computing. ACM. pp. 13–23. doi:10.1145/3717823.3718225. ISBN 979-8-4007-1510-5.
  5. ^ Hopcroft, John; Paul, Wolfgang; Valiant, Leslie (April 1977). "On Time Versus Space". Journal of the ACM. 24 (2): 332–337. doi:10.1145/322003.322015. ISSN 0004-5411.
  • Szepietowski, Andrzej (1994). Turing Machines with Sublogarithmic Space. Springer Science+Business Media. ISBN 978-3-540-58355-4.
  • Arora, Sanjeev; Barak, Boaz (2009). Computational complexity. A modern approach. Cambridge University Press. ISBN 978-0-521-42426-4. Zbl 1193.68112.

External links

[edit]
  • Complexity Zoo: DSPACE(f(n)).
  • v
  • t
  • e
Complexity classes
Considered feasible
  • DLOGTIME
  • AC0
  • ACC0
  • TC
    • TC0
  • L
  • SL
  • RL
  • FL
  • NL
    • NL-complete
  • NC
  • SC
  • CC
  • P
    • P-complete
  • ZPP
  • RP
  • BPP
  • BQP
  • APX
  • FP
Suspected infeasible
  • UP
  • NP
    • NP-complete
    • NP-hard
    • co-NP
    • co-NP-complete
  • TFNP
  • FNP
  • AM
  • QMA
  • PH
  • ⊕P
  • PP
  • #P
    • #P-complete
  • IP
  • PSPACE
    • PSPACE-complete
Considered infeasible
  • EXPTIME
  • NEXPTIME
  • EXPSPACE
  • 2-EXPTIME
  • ELEMENTARY
    • NONELEMENTARY
  • PR
  • R
  • RE
  • ALL
Other complexity classes
  • polyL
  • QP
Class hierarchies
  • Polynomial hierarchy
  • Exponential hierarchy
  • Grzegorczyk hierarchy
  • Arithmetical hierarchy
  • Boolean hierarchy
Families of classes
  • DTIME
  • NTIME
  • DSPACE
  • NSPACE
  • Probabilistically checkable proof
  • Interactive proof system
List of complexity classes
Retrieved from "https://teknopedia.ac.id/w/index.php?title=DSPACE&oldid=1327109720"
Categories:
  • Computational resources
  • Complexity classes
Hidden categories:
  • Articles with short description
  • Short description is different from Wikidata
  • Articles needing additional references from October 2009
  • All articles needing additional references

  • indonesia
  • Polski
  • العربية
  • Deutsch
  • English
  • Español
  • Français
  • Italiano
  • مصرى
  • Nederlands
  • 日本語
  • Português
  • Sinugboanong Binisaya
  • Svenska
  • Українська
  • Tiếng Việt
  • Winaray
  • 中文
  • Русский
Sunting pranala
url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url
Pusat Layanan

UNIVERSITAS TEKNOKRAT INDONESIA | ASEAN's Best Private University
Jl. ZA. Pagar Alam No.9 -11, Labuhan Ratu, Kec. Kedaton, Kota Bandar Lampung, Lampung 35132
Phone: (0721) 702022
Email: pmb@teknokrat.ac.id