Epstein Files Full PDF

CLICK HERE
Technopedia Center
PMB University Brochure
Faculty of Engineering and Computer Science
S1 Informatics S1 Information Systems S1 Information Technology S1 Computer Engineering S1 Electrical Engineering S1 Civil Engineering

faculty of Economics and Business
S1 Management S1 Accountancy

Faculty of Letters and Educational Sciences
S1 English literature S1 English language education S1 Mathematics education S1 Sports Education
teknopedia

  • Registerasi
  • Brosur UTI
  • Kip Scholarship Information
  • Performance
Flag Counter
  1. World Encyclopedia
  2. Skellam distribution - Wikipedia
Skellam distribution - Wikipedia
From Wikipedia, the free encyclopedia
Discrete probability distribution
Skellam
Probability mass function
Examples of the probability mass function for the Skellam distribution.
Examples of the probability mass function for the Skellam distribution. The horizontal axis is the index k. (The function is only defined at integer values of k. The connecting lines do not indicate continuity.)
Parameters μ 1 ≥ 0 ,     μ 2 ≥ 0 {\displaystyle \mu _{1}\geq 0,~~\mu _{2}\geq 0} {\displaystyle \mu _{1}\geq 0,~~\mu _{2}\geq 0}
Support k ∈ { … , − 2 , − 1 , 0 , 1 , 2 , … } {\displaystyle k\in \{\ldots ,-2,-1,0,1,2,\ldots \}} {\displaystyle k\in \{\ldots ,-2,-1,0,1,2,\ldots \}}
PMF e − ( μ 1 + μ 2 ) ( μ 1 μ 2 ) k / 2 I k ( 2 μ 1 μ 2 ) {\displaystyle e^{-(\mu _{1}\!+\!\mu _{2})}\left({\frac {\mu _{1}}{\mu _{2}}}\right)^{k/2}\!\!I_{k}(2{\sqrt {\mu _{1}\mu _{2}}})} {\displaystyle e^{-(\mu _{1}\!+\!\mu _{2})}\left({\frac {\mu _{1}}{\mu _{2}}}\right)^{k/2}\!\!I_{k}(2{\sqrt {\mu _{1}\mu _{2}}})}
Mean μ 1 − μ 2 {\displaystyle \mu _{1}-\mu _{2}\,} {\displaystyle \mu _{1}-\mu _{2}\,}
Median N/A
Variance μ 1 + μ 2 {\displaystyle \mu _{1}+\mu _{2}\,} {\displaystyle \mu _{1}+\mu _{2}\,}
Skewness μ 1 − μ 2 ( μ 1 + μ 2 ) 3 / 2 {\displaystyle {\frac {\mu _{1}-\mu _{2}}{(\mu _{1}+\mu _{2})^{3/2}}}} {\displaystyle {\frac {\mu _{1}-\mu _{2}}{(\mu _{1}+\mu _{2})^{3/2}}}}
Excess kurtosis 1 μ 1 + μ 2 {\displaystyle {\frac {1}{\mu _{1}+\mu _{2}}}} {\displaystyle {\frac {1}{\mu _{1}+\mu _{2}}}}
MGF e − ( μ 1 + μ 2 ) + μ 1 e t + μ 2 e − t {\displaystyle e^{-(\mu _{1}+\mu _{2})+\mu _{1}e^{t}+\mu _{2}e^{-t}}} {\displaystyle e^{-(\mu _{1}+\mu _{2})+\mu _{1}e^{t}+\mu _{2}e^{-t}}}
CF e − ( μ 1 + μ 2 ) + μ 1 e i t + μ 2 e − i t {\displaystyle e^{-(\mu _{1}+\mu _{2})+\mu _{1}e^{it}+\mu _{2}e^{-it}}} {\displaystyle e^{-(\mu _{1}+\mu _{2})+\mu _{1}e^{it}+\mu _{2}e^{-it}}}

The Skellam distribution is the discrete probability distribution of the difference N 1 − N 2 {\displaystyle N_{1}-N_{2}} {\displaystyle N_{1}-N_{2}} of two statistically independent random variables N 1 {\displaystyle N_{1}} {\displaystyle N_{1}} and N 2 , {\displaystyle N_{2},} {\displaystyle N_{2},} each Poisson-distributed with respective expected values μ 1 {\displaystyle \mu _{1}} {\displaystyle \mu _{1}} and μ 2 {\displaystyle \mu _{2}} {\displaystyle \mu _{2}}. It is useful in describing the statistics of the difference of two images with simple photon noise, as well as describing the point spread distribution in sports where all scored points are equal, such as baseball, hockey and soccer.

The distribution is also applicable to a special case of the difference of dependent Poisson random variables, but just the obvious case where the two variables have a common additive random contribution which is cancelled by the differencing: see Karlis & Ntzoufras (2003) for details and an application.

The probability mass function for the Skellam distribution for a difference K = N 1 − N 2 {\displaystyle K=N_{1}-N_{2}} {\displaystyle K=N_{1}-N_{2}} between two independent Poisson-distributed random variables with means μ 1 {\displaystyle \mu _{1}} {\displaystyle \mu _{1}} and μ 2 {\displaystyle \mu _{2}} {\displaystyle \mu _{2}} is given by:

p ( k ; μ 1 , μ 2 ) = Pr { K = k } = e − ( μ 1 + μ 2 ) ( μ 1 μ 2 ) k / 2 I k ( 2 μ 1 μ 2 ) {\displaystyle p(k;\mu _{1},\mu _{2})=\Pr\{K=k\}=e^{-(\mu _{1}+\mu _{2})}\left({\mu _{1} \over \mu _{2}}\right)^{k/2}I_{k}(2{\sqrt {\mu _{1}\mu _{2}}})} {\displaystyle p(k;\mu _{1},\mu _{2})=\Pr\{K=k\}=e^{-(\mu _{1}+\mu _{2})}\left({\mu _{1} \over \mu _{2}}\right)^{k/2}I_{k}(2{\sqrt {\mu _{1}\mu _{2}}})}

where Ik(z) is the modified Bessel function of the first kind. Since k is an integer we have that Ik(z) = I|k|(z).

Derivation

[edit]

The probability mass function of a Poisson-distributed random variable with mean μ is given by

p ( k ; μ ) = μ k k ! e − μ . {\displaystyle p(k;\mu )={\mu ^{k} \over k!}e^{-\mu }.\,} {\displaystyle p(k;\mu )={\mu ^{k} \over k!}e^{-\mu }.\,}

for k ≥ 0 {\displaystyle k\geq 0} {\displaystyle k\geq 0} (and zero otherwise). The Skellam probability mass function for the difference of two independent counts K = N 1 − N 2 {\displaystyle K=N_{1}-N_{2}} {\displaystyle K=N_{1}-N_{2}} is the convolution of two Poisson distributions: (Skellam, 1946)

p ( k ; μ 1 , μ 2 ) = ∑ n = − ∞ ∞ p ( k + n ; μ 1 ) p ( n ; μ 2 ) = e − ( μ 1 + μ 2 ) ∑ n = max ( 0 , − k ) ∞ μ 1 k + n μ 2 n n ! ( k + n ) ! {\displaystyle {\begin{aligned}p(k;\mu _{1},\mu _{2})&=\sum _{n=-\infty }^{\infty }p(k+n;\mu _{1})p(n;\mu _{2})\\&=e^{-(\mu _{1}+\mu _{2})}\sum _{n=\max(0,-k)}^{\infty }{{\mu _{1}^{k+n}\mu _{2}^{n}} \over {n!(k+n)!}}\end{aligned}}} {\displaystyle {\begin{aligned}p(k;\mu _{1},\mu _{2})&=\sum _{n=-\infty }^{\infty }p(k+n;\mu _{1})p(n;\mu _{2})\\&=e^{-(\mu _{1}+\mu _{2})}\sum _{n=\max(0,-k)}^{\infty }{{\mu _{1}^{k+n}\mu _{2}^{n}} \over {n!(k+n)!}}\end{aligned}}} Since the Poisson distribution is zero for negative values of the count ( p ( N < 0 ; μ ) = 0 ) {\displaystyle (p(N<0;\mu )=0)} {\displaystyle (p(N<0;\mu )=0)}, the second sum is only taken for those terms where n ≥ 0 {\displaystyle n\geq 0} {\displaystyle n\geq 0} and n + k ≥ 0 {\displaystyle n+k\geq 0} {\displaystyle n+k\geq 0}. It can be shown that the above sum implies that

p ( k ; μ 1 , μ 2 ) p ( − k ; μ 1 , μ 2 ) = ( μ 1 μ 2 ) k {\displaystyle {\frac {p(k;\mu _{1},\mu _{2})}{p(-k;\mu _{1},\mu _{2})}}=\left({\frac {\mu _{1}}{\mu _{2}}}\right)^{k}} {\displaystyle {\frac {p(k;\mu _{1},\mu _{2})}{p(-k;\mu _{1},\mu _{2})}}=\left({\frac {\mu _{1}}{\mu _{2}}}\right)^{k}}

so that:

p ( k ; μ 1 , μ 2 ) = e − ( μ 1 + μ 2 ) ( μ 1 μ 2 ) k / 2 I | k | ( 2 μ 1 μ 2 ) {\displaystyle p(k;\mu _{1},\mu _{2})=e^{-(\mu _{1}+\mu _{2})}\left({\mu _{1} \over \mu _{2}}\right)^{k/2}I_{|k|}(2{\sqrt {\mu _{1}\mu _{2}}})} {\displaystyle p(k;\mu _{1},\mu _{2})=e^{-(\mu _{1}+\mu _{2})}\left({\mu _{1} \over \mu _{2}}\right)^{k/2}I_{|k|}(2{\sqrt {\mu _{1}\mu _{2}}})}

where I k(z) is the modified Bessel function of the first kind. The special case for μ 1 = μ 2 ( = μ ) {\displaystyle \mu _{1}=\mu _{2}(=\mu )} {\displaystyle \mu _{1}=\mu _{2}(=\mu )} is given by Irwin (1937):

p ( k ; μ , μ ) = e − 2 μ I | k | ( 2 μ ) . {\displaystyle p{\left(k;\mu ,\mu \right)}=e^{-2\mu }I_{|k|}(2\mu ).} {\displaystyle p{\left(k;\mu ,\mu \right)}=e^{-2\mu }I_{|k|}(2\mu ).}

Using the limiting values of the modified Bessel function for small arguments, we can recover the Poisson distribution as a special case of the Skellam distribution for μ 2 = 0 {\displaystyle \mu _{2}=0} {\displaystyle \mu _{2}=0}.

Properties

[edit]

As it is a discrete probability function, the Skellam probability mass function is normalized:

∑ k = − ∞ ∞ p ( k ; μ 1 , μ 2 ) = 1. {\displaystyle \sum _{k=-\infty }^{\infty }p(k;\mu _{1},\mu _{2})=1.} {\displaystyle \sum _{k=-\infty }^{\infty }p(k;\mu _{1},\mu _{2})=1.}

We know that the probability generating function (pgf) for a Poisson distribution is:

G ( t ; μ ) = e μ ( t − 1 ) . {\displaystyle G\left(t;\mu \right)=e^{\mu (t-1)}.} {\displaystyle G\left(t;\mu \right)=e^{\mu (t-1)}.}

It follows that the pgf, G ( t ; μ 1 , μ 2 ) {\displaystyle G(t;\mu _{1},\mu _{2})} {\displaystyle G(t;\mu _{1},\mu _{2})}, for a Skellam probability mass function will be:

G ( t ; μ 1 , μ 2 ) = ∑ k = − ∞ ∞ p ( k ; μ 1 , μ 2 ) t k = G ( t ; μ 1 ) G ( 1 / t ; μ 2 ) = e − ( μ 1 + μ 2 ) + μ 1 t + μ 2 / t . {\displaystyle {\begin{aligned}G(t;\mu _{1},\mu _{2})&=\sum _{k=-\infty }^{\infty }p(k;\mu _{1},\mu _{2})t^{k}\\[4pt]&=G\left(t;\mu _{1}\right)G\left(1/t;\mu _{2}\right)\\[4pt]&=e^{-(\mu _{1}+\mu _{2})+\mu _{1}t+\mu _{2}/t}.\end{aligned}}} {\displaystyle {\begin{aligned}G(t;\mu _{1},\mu _{2})&=\sum _{k=-\infty }^{\infty }p(k;\mu _{1},\mu _{2})t^{k}\\[4pt]&=G\left(t;\mu _{1}\right)G\left(1/t;\mu _{2}\right)\\[4pt]&=e^{-(\mu _{1}+\mu _{2})+\mu _{1}t+\mu _{2}/t}.\end{aligned}}}

Notice that the form of the probability-generating function implies that the distribution of the sums or the differences of any number of independent Skellam-distributed variables are again Skellam-distributed. It is sometimes claimed that any linear combination of two Skellam distributed variables are again Skellam-distributed, but this is clearly not true since any multiplier other than ± 1 {\displaystyle \pm 1} {\displaystyle \pm 1} would change the support of the distribution and alter the pattern of moments in a way that no Skellam distribution can satisfy.

The moment-generating function is given by:

M ( t ; μ 1 , μ 2 ) = G ( e t ; μ 1 , μ 2 ) = ∑ k = 0 ∞ t k k ! m k {\displaystyle M\left(t;\mu _{1},\mu _{2}\right)=G(e^{t};\mu _{1},\mu _{2})=\sum _{k=0}^{\infty }{t^{k} \over k!}\,m_{k}} {\displaystyle M\left(t;\mu _{1},\mu _{2}\right)=G(e^{t};\mu _{1},\mu _{2})=\sum _{k=0}^{\infty }{t^{k} \over k!}\,m_{k}}

which yields the raw moments mk . Define:

Δ   = d e f   μ 1 − μ 2 {\displaystyle \Delta \ {\stackrel {\mathrm {def} }{=}}\ \mu _{1}-\mu _{2}} {\displaystyle \Delta \ {\stackrel {\mathrm {def} }{=}}\ \mu _{1}-\mu _{2}}

μ   = d e f   1 2 ( μ 1 + μ 2 ) . {\displaystyle \mu \ {\stackrel {\mathrm {def} }{=}}\ {\tfrac {1}{2}}(\mu _{1}+\mu _{2}).} {\displaystyle \mu \ {\stackrel {\mathrm {def} }{=}}\ {\tfrac {1}{2}}(\mu _{1}+\mu _{2}).}

Then the raw moments mk are

m 1 = Δ m 2 = 2 μ + Δ 2 m 3 = Δ ( 1 + 6 μ + Δ 2 ) {\displaystyle {\begin{aligned}m_{1}&=\Delta \\m_{2}&=2\mu +\Delta ^{2}\\m_{3}&=\Delta \left(1+6\mu +\Delta ^{2}\right)\end{aligned}}} {\displaystyle {\begin{aligned}m_{1}&=\Delta \\m_{2}&=2\mu +\Delta ^{2}\\m_{3}&=\Delta \left(1+6\mu +\Delta ^{2}\right)\end{aligned}}}

The central moments M k are

M 2 = 2 μ , M 3 = Δ , M 4 = 2 μ + 12 μ 2 . {\displaystyle {\begin{aligned}M_{2}&=2\mu ,\\M_{3}&=\Delta ,\\M_{4}&=2\mu +12\mu ^{2}.\,\end{aligned}}} {\displaystyle {\begin{aligned}M_{2}&=2\mu ,\\M_{3}&=\Delta ,\\M_{4}&=2\mu +12\mu ^{2}.\,\end{aligned}}}

The mean, variance, skewness, and kurtosis excess are respectively:

E ⁡ ( n ) = Δ , σ 2 = 2 μ , γ 1 = Δ / ( 2 μ ) 3 / 2 , γ 2 = 1 / 2. {\displaystyle {\begin{aligned}\operatorname {E} (n)&=\Delta ,\\[4pt]\sigma ^{2}&=2\mu ,\\[4pt]\gamma _{1}&=\Delta /(2\mu )^{3/2},\\[4pt]\gamma _{2}&=1/2.\end{aligned}}} {\displaystyle {\begin{aligned}\operatorname {E} (n)&=\Delta ,\\[4pt]\sigma ^{2}&=2\mu ,\\[4pt]\gamma _{1}&=\Delta /(2\mu )^{3/2},\\[4pt]\gamma _{2}&=1/2.\end{aligned}}}

The cumulant-generating function is given by:

K ( t ; μ 1 , μ 2 )   = d e f   ln ⁡ ( M ( t ; μ 1 , μ 2 ) ) = ∑ k = 0 ∞ t k k ! κ k {\displaystyle K(t;\mu _{1},\mu _{2})\ {\stackrel {\mathrm {def} }{=}}\ \ln(M(t;\mu _{1},\mu _{2}))=\sum _{k=0}^{\infty }{\frac {t^{k}}{k!}}\,\kappa _{k}} {\displaystyle K(t;\mu _{1},\mu _{2})\ {\stackrel {\mathrm {def} }{=}}\ \ln(M(t;\mu _{1},\mu _{2}))=\sum _{k=0}^{\infty }{\frac {t^{k}}{k!}}\,\kappa _{k}}

which yields the cumulants:

κ 2 k = 2 μ , κ 2 k + 1 = Δ . {\displaystyle {\begin{aligned}\kappa _{2k}&=2\mu ,\\\kappa _{2k+1}&=\Delta .\end{aligned}}} {\displaystyle {\begin{aligned}\kappa _{2k}&=2\mu ,\\\kappa _{2k+1}&=\Delta .\end{aligned}}}

For the special case when μ1 = μ2, an asymptotic expansion of the modified Bessel function of the first kind yields for large μ:

p ( k ; μ , μ ) ∼ 1 4 π μ [ 1 + ∑ n = 1 ∞ ( − 1 ) n { 4 k 2 − 1 2 } { 4 k 2 − 3 2 } ⋯ { 4 k 2 − ( 2 n − 1 ) 2 } n ! 2 3 n ( 2 μ ) n ] . {\displaystyle p(k;\mu ,\mu )\sim {\frac {1}{\sqrt {4\pi \mu }}}\left[1+\sum _{n=1}^{\infty }\left(-1\right)^{n}{\frac {\left\{4k^{2}-1^{2}\right\}\left\{4k^{2}-3^{2}\right\}\cdots \left\{4k^{2}-(2n-1)^{2}\right\}}{n!\,2^{3n}\,(2\mu )^{n}}}\right].} {\displaystyle p(k;\mu ,\mu )\sim {\frac {1}{\sqrt {4\pi \mu }}}\left[1+\sum _{n=1}^{\infty }\left(-1\right)^{n}{\frac {\left\{4k^{2}-1^{2}\right\}\left\{4k^{2}-3^{2}\right\}\cdots \left\{4k^{2}-(2n-1)^{2}\right\}}{n!\,2^{3n}\,(2\mu )^{n}}}\right].}

(Abramowitz & Stegun 1972, p. 377). Also, for this special case, when k is also large, and of order of the square root of 2μ, the distribution tends to a normal distribution:

p ( k ; μ , μ ) ∼ e − k 2 / 4 μ 4 π μ . {\displaystyle p(k;\mu ,\mu )\sim {\frac {e^{-k^{2}/4\mu }}{\sqrt {4\pi \mu }}}.} {\displaystyle p(k;\mu ,\mu )\sim {\frac {e^{-k^{2}/4\mu }}{\sqrt {4\pi \mu }}}.}

These special results can easily be extended to the more general case of different means.

Bounds on weight above zero

[edit]

If X ∼ Skellam ⁡ ( μ 1 , μ 2 ) {\displaystyle X\sim \operatorname {Skellam} (\mu _{1},\mu _{2})} {\displaystyle X\sim \operatorname {Skellam} (\mu _{1},\mu _{2})}, with μ 1 < μ 2 {\displaystyle \mu _{1}<\mu _{2}} {\displaystyle \mu _{1}<\mu _{2}}, then

exp ⁡ [ − ( μ 1 − μ 2 ) 2 ] ( μ 1 + μ 2 ) 2 − e − ( μ 1 + μ 2 ) 2 μ 1 μ 2 − e − ( μ 1 + μ 2 ) 4 μ 1 μ 2 ≤ Pr { X ≥ 0 } ≤ exp ⁡ [ − ( μ 1 − μ 2 ) 2 ] {\displaystyle {\frac {\exp \left[-\left({\sqrt {\mu _{1}}}-{\sqrt {\mu _{2}}}\right)^{2}\right]}{\left(\mu _{1}+\mu _{2}\right)^{2}}}-{\frac {e^{-(\mu _{1}+\mu _{2})}}{2{\sqrt {\mu _{1}\mu _{2}}}}}-{\frac {e^{-(\mu _{1}+\mu _{2})}}{4\mu _{1}\mu _{2}}}\leq \Pr\{X\geq 0\}\leq \exp \left[-\left({\sqrt {\mu _{1}}}-{\sqrt {\mu _{2}}}\right)^{2}\right]} {\displaystyle {\frac {\exp \left[-\left({\sqrt {\mu _{1}}}-{\sqrt {\mu _{2}}}\right)^{2}\right]}{\left(\mu _{1}+\mu _{2}\right)^{2}}}-{\frac {e^{-(\mu _{1}+\mu _{2})}}{2{\sqrt {\mu _{1}\mu _{2}}}}}-{\frac {e^{-(\mu _{1}+\mu _{2})}}{4\mu _{1}\mu _{2}}}\leq \Pr\{X\geq 0\}\leq \exp \left[-\left({\sqrt {\mu _{1}}}-{\sqrt {\mu _{2}}}\right)^{2}\right]}

Details can be found in Poisson distribution § Poisson races

See also

[edit]
  • Ratio distribution for (truncated) Poisson distributions

References

[edit]
  • Abramowitz, Milton; Stegun, Irene A., eds. (June 1965). Handbook of mathematical functions with formulas, graphs, and mathematical tables (Unabridged and unaltered republ. [der Ausg.] 1964, 5. Dover printing ed.). Dover Publications. pp. 374–378. ISBN 0486612724. Retrieved 27 September 2012.
  • Irwin, J. O. (1937) "The frequency distribution of the difference between two independent variates following the same Poisson distribution." Journal of the Royal Statistical Society: Series A, 100 (3), 415–416. JSTOR 2980526
  • Karlis, D. and Ntzoufras, I. (2003) "Analysis of sports data using bivariate Poisson models". Journal of the Royal Statistical Society, Series D, 52 (3), 381–393. doi:10.1111/1467-9884.00366
  • Karlis D. and Ntzoufras I. (2006). Bayesian analysis of the differences of count data. Statistics in Medicine, 25, 1885–1905. [1]
  • Skellam, J. G. (1946) "The frequency distribution of the difference between two Poisson variates belonging to different populations". Journal of the Royal Statistical Society, Series A, 109 (3), 296. JSTOR 2981372
  • v
  • t
  • e
Probability distributions (list)
Discrete
univariate
with finite
support
  • Benford
  • Bernoulli
  • Beta-binomial
  • Binomial
  • Categorical
  • Hypergeometric
    • Negative
  • Poisson binomial
  • Rademacher
  • Soliton
  • Discrete uniform
  • Zipf
  • Zipf–Mandelbrot
with infinite
support
  • Beta negative binomial
  • Borel
  • Conway–Maxwell–Poisson
  • Discrete phase-type
  • Delaporte
  • Extended negative binomial
  • Flory–Schulz
  • Gauss–Kuzmin
  • Geometric
  • Logarithmic
  • Mixed Poisson
  • Negative binomial
  • Panjer
  • Parabolic fractal
  • Poisson
  • Skellam
  • Yule–Simon
  • Zeta
Continuous
univariate
supported on a
bounded interval
  • Arcsine
  • ARGUS
  • Balding–Nichols
  • Bates
  • Beta
    • Generalized
  • Beta rectangular
  • Continuous Bernoulli
  • Irwin–Hall
  • Kumaraswamy
  • Logit-normal
  • Noncentral beta
  • PERT
  • Power function
  • Raised cosine
  • Reciprocal
  • Triangular
  • U-quadratic
  • Uniform
  • Wigner semicircle
supported on a
semi-infinite
interval
  • Benini
  • Benktander 1st kind
  • Benktander 2nd kind
  • Beta prime
  • Burr
  • Chi
  • Chi-squared
    • Noncentral
    • Inverse
      • Scaled
  • Dagum
  • Davis
  • Erlang
    • Hyper
  • Exponential
    • Hyperexponential
    • Hypoexponential
    • Logarithmic
  • F
    • Noncentral
  • Folded normal
  • Fréchet
  • Gamma
    • Generalized
    • Inverse
  • gamma/Gompertz
  • Gompertz
    • Shifted
  • Half-logistic
  • Half-normal
  • Hotelling's T-squared
  • Hartman–Watson
  • Inverse Gaussian
    • Generalized
  • Kolmogorov
  • Lévy
  • Log-Cauchy
  • Log-Laplace
  • Log-logistic
  • Log-normal
  • Log-t
  • Lomax
  • Matrix-exponential
  • Maxwell–Boltzmann
  • Maxwell–Jüttner
  • Mittag-Leffler
  • Nakagami
  • Pareto
  • Phase-type
  • Poly-Weibull
  • Rayleigh
  • Relativistic Breit–Wigner
  • Rice
  • Truncated normal
  • type-2 Gumbel
  • Weibull
    • Discrete
  • Wilks's lambda
supported
on the whole
real line
  • Cauchy
  • Exponential power
  • Fisher's z
  • Kaniadakis κ-Gaussian
  • Gaussian q
  • Generalized hyperbolic
  • Generalized logistic (logistic-beta)
  • Generalized normal
  • Geometric stable
  • Gumbel
  • Holtsmark
  • Hyperbolic secant
  • Johnson's SU
  • Landau
  • Laplace
    • Asymmetric
  • Logistic
  • Noncentral t
  • Normal (Gaussian)
  • Normal-inverse Gaussian
  • Skew normal
  • Slash
  • Stable
  • Student's t
  • Tracy–Widom
  • Variance-gamma
  • Voigt
with support
whose type varies
  • Generalized chi-squared
  • Generalized extreme value
  • Generalized Pareto
  • Marchenko–Pastur
  • Kaniadakis κ-exponential
  • Kaniadakis κ-Gamma
  • Kaniadakis κ-Weibull
  • Kaniadakis κ-Logistic
  • Kaniadakis κ-Erlang
  • q-exponential
  • q-Gaussian
  • q-Weibull
  • Shifted log-logistic
  • Tukey lambda
Mixed
univariate
continuous-
discrete
  • Rectified Gaussian
Multivariate
(joint)
  • Discrete:
  • Ewens
  • Multinomial
    • Dirichlet
    • Negative
  • Continuous:
  • Dirichlet
    • Generalized
  • Multivariate Laplace
  • Multivariate normal
  • Multivariate stable
  • Multivariate t
  • Normal-gamma
    • Inverse
  • Matrix-valued:
  • LKJ
  • Matrix beta
  • Matrix F
  • Matrix normal
  • Matrix t
  • Matrix gamma
    • Inverse
  • Wishart
    • Normal
    • Inverse
    • Normal-inverse
    • Complex
  • Uniform distribution on a Stiefel manifold
Directional
Univariate (circular) directional
Circular uniform
Univariate von Mises
Wrapped normal
Wrapped Cauchy
Wrapped exponential
Wrapped asymmetric Laplace
Wrapped Lévy
Bivariate (spherical)
Kent
Bivariate (toroidal)
Bivariate von Mises
Multivariate
von Mises–Fisher
Bingham
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families
  • Circular
  • Compound Poisson
  • Elliptical
  • Exponential
  • Natural exponential
  • Location–scale
  • Maximum entropy
  • Mixture
  • Pearson
  • Tweedie
  • Wrapped
  • Category
  • Commons
Retrieved from "https://teknopedia.ac.id/w/index.php?title=Skellam_distribution&oldid=1305614924"
Categories:
  • Discrete distributions
  • Poisson distribution
  • Infinitely divisible probability distributions
Hidden categories:
  • Articles with short description
  • Short description matches Wikidata

  • indonesia
  • Polski
  • العربية
  • Deutsch
  • English
  • Español
  • Français
  • Italiano
  • مصرى
  • Nederlands
  • 日本語
  • Português
  • Sinugboanong Binisaya
  • Svenska
  • Українська
  • Tiếng Việt
  • Winaray
  • 中文
  • Русский
Sunting pranala
url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url
Pusat Layanan

UNIVERSITAS TEKNOKRAT INDONESIA | ASEAN's Best Private University
Jl. ZA. Pagar Alam No.9 -11, Labuhan Ratu, Kec. Kedaton, Kota Bandar Lampung, Lampung 35132
Phone: (0721) 702022
Email: pmb@teknokrat.ac.id