Epstein Files Full PDF

CLICK HERE
Technopedia Center
PMB University Brochure
Faculty of Engineering and Computer Science
S1 Informatics S1 Information Systems S1 Information Technology S1 Computer Engineering S1 Electrical Engineering S1 Civil Engineering

faculty of Economics and Business
S1 Management S1 Accountancy

Faculty of Letters and Educational Sciences
S1 English literature S1 English language education S1 Mathematics education S1 Sports Education
teknopedia

  • Registerasi
  • Brosur UTI
  • Kip Scholarship Information
  • Performance
Flag Counter
  1. World Encyclopedia
  2. Exponential-logarithmic distribution - Wikipedia
Exponential-logarithmic distribution - Wikipedia
From Wikipedia, the free encyclopedia
Family of lifetime distributions with decreasing failure rate
Exponential-Logarithmic distribution (EL)
Probability density function
Probability density function
Parameters p ∈ ( 0 , 1 ) {\displaystyle p\in (0,1)} {\displaystyle p\in (0,1)}
β > 0 {\displaystyle \beta >0} {\displaystyle \beta >0}
Support x ∈ [ 0 , ∞ ) {\displaystyle x\in [0,\infty )} {\displaystyle x\in [0,\infty )}
PDF 1 − ln ⁡ p × β ( 1 − p ) e − β x 1 − ( 1 − p ) e − β x {\displaystyle {\frac {1}{-\ln p}}\times {\frac {\beta (1-p)e^{-\beta x}}{1-(1-p)e^{-\beta x}}}} {\displaystyle {\frac {1}{-\ln p}}\times {\frac {\beta (1-p)e^{-\beta x}}{1-(1-p)e^{-\beta x}}}}
CDF 1 − ln ⁡ ( 1 − ( 1 − p ) e − β x ) ln ⁡ p {\displaystyle 1-{\frac {\ln(1-(1-p)e^{-\beta x})}{\ln p}}} {\displaystyle 1-{\frac {\ln(1-(1-p)e^{-\beta x})}{\ln p}}}
Mean − polylog ( 2 , 1 − p ) β ln ⁡ p {\displaystyle -{\frac {{\text{polylog}}(2,1-p)}{\beta \ln p}}} {\displaystyle -{\frac {{\text{polylog}}(2,1-p)}{\beta \ln p}}}
Median ln ⁡ ( 1 + p ) β {\displaystyle {\frac {\ln(1+{\sqrt {p}})}{\beta }}} {\displaystyle {\frac {\ln(1+{\sqrt {p}})}{\beta }}}
Mode 0
Variance − 2 polylog ( 3 , 1 − p ) β 2 ln ⁡ p {\displaystyle -{\frac {2{\text{polylog}}(3,1-p)}{\beta ^{2}\ln p}}} {\displaystyle -{\frac {2{\text{polylog}}(3,1-p)}{\beta ^{2}\ln p}}}
− polylog 2 ( 2 , 1 − p ) β 2 ln 2 ⁡ p {\displaystyle -{\frac {{\text{polylog}}^{2}(2,1-p)}{\beta ^{2}\ln ^{2}p}}} {\displaystyle -{\frac {{\text{polylog}}^{2}(2,1-p)}{\beta ^{2}\ln ^{2}p}}}
MGF − β ( 1 − p ) ln ⁡ p ( β − t ) hypergeom 2 , 1 {\displaystyle -{\frac {\beta (1-p)}{\ln p(\beta -t)}}{\text{hypergeom}}_{2,1}} {\displaystyle -{\frac {\beta (1-p)}{\ln p(\beta -t)}}{\text{hypergeom}}_{2,1}}
( [ 1 , β − t β ] , [ 2 β − t β ] , 1 − p ) {\displaystyle ([1,{\frac {\beta -t}{\beta }}],[{\frac {2\beta -t}{\beta }}],1-p)} {\displaystyle ([1,{\frac {\beta -t}{\beta }}],[{\frac {2\beta -t}{\beta }}],1-p)}

In probability theory and statistics, the Exponential-Logarithmic (EL) distribution is a family of lifetime distributions with decreasing failure rate, defined on the interval [0, ∞). This distribution is parameterized by two parameters p ∈ ( 0 , 1 ) {\displaystyle p\in (0,1)} {\displaystyle p\in (0,1)} and β > 0 {\displaystyle \beta >0} {\displaystyle \beta >0}.

Introduction

[edit]

The study of lengths of the lives of organisms, devices, materials, etc., is of major importance in the biological and engineering sciences. In general, the lifetime of a device is expected to exhibit decreasing failure rate (DFR) when its behavior over time is characterized by 'work-hardening' (in engineering terms) or 'immunity' (in biological terms).

The exponential-logarithmic model, together with its various properties, are studied by Tahmasbi and Rezaei (2008).[1] This model is obtained under the concept of population heterogeneity (through the process of compounding).

Properties of the distribution

[edit]

Distribution

[edit]

The probability density function (pdf) of the EL distribution is given by Tahmasbi and Rezaei (2008)[1]

f ( x ; p , β ) := ( 1 − ln ⁡ p ) β ( 1 − p ) e − β x 1 − ( 1 − p ) e − β x {\displaystyle f(x;p,\beta ):=\left({\frac {1}{-\ln p}}\right){\frac {\beta (1-p)e^{-\beta x}}{1-(1-p)e^{-\beta x}}}} {\displaystyle f(x;p,\beta ):=\left({\frac {1}{-\ln p}}\right){\frac {\beta (1-p)e^{-\beta x}}{1-(1-p)e^{-\beta x}}}}

where p ∈ ( 0 , 1 ) {\displaystyle p\in (0,1)} {\displaystyle p\in (0,1)} and β > 0 {\displaystyle \beta >0} {\displaystyle \beta >0}. This function is strictly decreasing in x {\displaystyle x} {\displaystyle x} and tends to zero as x → ∞ {\displaystyle x\rightarrow \infty } {\displaystyle x\rightarrow \infty }. The EL distribution has its modal value of the density at x=0, given by

β ( 1 − p ) − p ln ⁡ p {\displaystyle {\frac {\beta (1-p)}{-p\ln p}}} {\displaystyle {\frac {\beta (1-p)}{-p\ln p}}}

The EL reduces to the exponential distribution with rate parameter β {\displaystyle \beta } {\displaystyle \beta }, as p → 1 {\displaystyle p\rightarrow 1} {\displaystyle p\rightarrow 1}.

The cumulative distribution function is given by

F ( x ; p , β ) = 1 − ln ⁡ ( 1 − ( 1 − p ) e − β x ) ln ⁡ p , {\displaystyle F(x;p,\beta )=1-{\frac {\ln(1-(1-p)e^{-\beta x})}{\ln p}},} {\displaystyle F(x;p,\beta )=1-{\frac {\ln(1-(1-p)e^{-\beta x})}{\ln p}},}

and hence, the median is given by

x median = ln ⁡ ( 1 + p ) β {\displaystyle x_{\text{median}}={\frac {\ln(1+{\sqrt {p}})}{\beta }}} {\displaystyle x_{\text{median}}={\frac {\ln(1+{\sqrt {p}})}{\beta }}}.

Moments

[edit]

The moment generating function of X {\displaystyle X} {\displaystyle X} can be determined from the pdf by direct integration and is given by

M X ( t ) = E ( e t X ) = − β ( 1 − p ) ln ⁡ p ( β − t ) F 2 , 1 ( [ 1 , β − t β ] , [ 2 β − t β ] , 1 − p ) , {\displaystyle M_{X}(t)=E(e^{tX})=-{\frac {\beta (1-p)}{\ln p(\beta -t)}}F_{2,1}\left(\left[1,{\frac {\beta -t}{\beta }}\right],\left[{\frac {2\beta -t}{\beta }}\right],1-p\right),} {\displaystyle M_{X}(t)=E(e^{tX})=-{\frac {\beta (1-p)}{\ln p(\beta -t)}}F_{2,1}\left(\left[1,{\frac {\beta -t}{\beta }}\right],\left[{\frac {2\beta -t}{\beta }}\right],1-p\right),}

where F 2 , 1 {\displaystyle F_{2,1}} {\displaystyle F_{2,1}} is a hypergeometric function. This function is also known as Barnes's extended hypergeometric function. The definition of F N , D ( n , d , z ) {\displaystyle F_{N,D}({n,d},z)} {\displaystyle F_{N,D}({n,d},z)} is

F N , D ( n , d , z ) := ∑ k = 0 ∞ z k ∏ i = 1 p Γ ( n i + k ) Γ − 1 ( n i ) Γ ( k + 1 ) ∏ i = 1 q Γ ( d i + k ) Γ − 1 ( d i ) {\displaystyle F_{N,D}(n,d,z):=\sum _{k=0}^{\infty }{\frac {z^{k}\prod _{i=1}^{p}\Gamma (n_{i}+k)\Gamma ^{-1}(n_{i})}{\Gamma (k+1)\prod _{i=1}^{q}\Gamma (d_{i}+k)\Gamma ^{-1}(d_{i})}}} {\displaystyle F_{N,D}(n,d,z):=\sum _{k=0}^{\infty }{\frac {z^{k}\prod _{i=1}^{p}\Gamma (n_{i}+k)\Gamma ^{-1}(n_{i})}{\Gamma (k+1)\prod _{i=1}^{q}\Gamma (d_{i}+k)\Gamma ^{-1}(d_{i})}}}

where n = [ n 1 , n 2 , … , n N ] {\displaystyle n=[n_{1},n_{2},\dots ,n_{N}]} {\displaystyle n=[n_{1},n_{2},\dots ,n_{N}]} and d = [ d 1 , d 2 , … , d D ] {\displaystyle {d}=[d_{1},d_{2},\dots ,d_{D}]} {\displaystyle {d}=[d_{1},d_{2},\dots ,d_{D}]}.

The moments of X {\displaystyle X} {\displaystyle X} can be derived from M X ( t ) {\displaystyle M_{X}(t)} {\displaystyle M_{X}(t)}. For r ∈ N {\displaystyle r\in \mathbb {N} } {\displaystyle r\in \mathbb {N} }, the raw moments are given by

E ( X r ; p , β ) = − r ! Li r + 1 ⁡ ( 1 − p ) β r ln ⁡ p , {\displaystyle E(X^{r};p,\beta )=-r!{\frac {\operatorname {Li} _{r+1}(1-p)}{\beta ^{r}\ln p}},} {\displaystyle E(X^{r};p,\beta )=-r!{\frac {\operatorname {Li} _{r+1}(1-p)}{\beta ^{r}\ln p}},}

where Li a ⁡ ( z ) {\displaystyle \operatorname {Li} _{a}(z)} {\displaystyle \operatorname {Li} _{a}(z)} is the polylogarithm function which is defined as follows:[2]

Li a ⁡ ( z ) = ∑ k = 1 ∞ z k k a . {\displaystyle \operatorname {Li} _{a}(z)=\sum _{k=1}^{\infty }{\frac {z^{k}}{k^{a}}}.} {\displaystyle \operatorname {Li} _{a}(z)=\sum _{k=1}^{\infty }{\frac {z^{k}}{k^{a}}}.}

Hence the mean and variance of the EL distribution are given, respectively, by

E ( X ) = − Li 2 ⁡ ( 1 − p ) β ln ⁡ p , {\displaystyle E(X)=-{\frac {\operatorname {Li} _{2}(1-p)}{\beta \ln p}},} {\displaystyle E(X)=-{\frac {\operatorname {Li} _{2}(1-p)}{\beta \ln p}},}
Var ⁡ ( X ) = − 2 Li 3 ⁡ ( 1 − p ) β 2 ln ⁡ p − ( Li 2 ⁡ ( 1 − p ) β ln ⁡ p ) 2 . {\displaystyle \operatorname {Var} (X)=-{\frac {2\operatorname {Li} _{3}(1-p)}{\beta ^{2}\ln p}}-\left({\frac {\operatorname {Li} _{2}(1-p)}{\beta \ln p}}\right)^{2}.} {\displaystyle \operatorname {Var} (X)=-{\frac {2\operatorname {Li} _{3}(1-p)}{\beta ^{2}\ln p}}-\left({\frac {\operatorname {Li} _{2}(1-p)}{\beta \ln p}}\right)^{2}.}

The survival, hazard and mean residual life functions

[edit]
Hazard function

The survival function (also known as the reliability function) and hazard function (also known as the failure rate function) of the EL distribution are given, respectively, by

s ( x ) = ln ⁡ ( 1 − ( 1 − p ) e − β x ) ln ⁡ p , {\displaystyle s(x)={\frac {\ln(1-(1-p)e^{-\beta x})}{\ln p}},} {\displaystyle s(x)={\frac {\ln(1-(1-p)e^{-\beta x})}{\ln p}},}
h ( x ) = − β ( 1 − p ) e − β x ( 1 − ( 1 − p ) e − β x ) ln ⁡ ( 1 − ( 1 − p ) e − β x ) . {\displaystyle h(x)={\frac {-\beta (1-p)e^{-\beta x}}{(1-(1-p)e^{-\beta x})\ln(1-(1-p)e^{-\beta x})}}.} {\displaystyle h(x)={\frac {-\beta (1-p)e^{-\beta x}}{(1-(1-p)e^{-\beta x})\ln(1-(1-p)e^{-\beta x})}}.}

The mean residual lifetime of the EL distribution is given by

m ( x 0 ; p , β ) = E ( X − x 0 | X ≥ x 0 ; β , p ) = − Li 2 ⁡ ( 1 − ( 1 − p ) e − β x 0 ) β ln ⁡ ( 1 − ( 1 − p ) e − β x 0 ) {\displaystyle m(x_{0};p,\beta )=E(X-x_{0}|X\geq x_{0};\beta ,p)=-{\frac {\operatorname {Li} _{2}(1-(1-p)e^{-\beta x_{0}})}{\beta \ln(1-(1-p)e^{-\beta x_{0}})}}} {\displaystyle m(x_{0};p,\beta )=E(X-x_{0}|X\geq x_{0};\beta ,p)=-{\frac {\operatorname {Li} _{2}(1-(1-p)e^{-\beta x_{0}})}{\beta \ln(1-(1-p)e^{-\beta x_{0}})}}}

where Li 2 {\displaystyle \operatorname {Li} _{2}} {\displaystyle \operatorname {Li} _{2}} is the dilogarithm function

Random number generation

[edit]

Let U be a random variate from the standard uniform distribution. Then the following transformation of U has the EL distribution with parameters p and β:

X = 1 β ln ⁡ ( 1 − p 1 − p U ) . {\displaystyle X={\frac {1}{\beta }}\ln \left({\frac {1-p}{1-p^{U}}}\right).} {\displaystyle X={\frac {1}{\beta }}\ln \left({\frac {1-p}{1-p^{U}}}\right).}

Estimation of the parameters

[edit]

To estimate the parameters, the EM algorithm is used. This method is discussed by Tahmasbi and Rezaei (2008).[1] The EM iteration is given by

β ( h + 1 ) = n ( ∑ i = 1 n x i 1 − ( 1 − p ( h ) ) e − β ( h ) x i ) − 1 , {\displaystyle \beta ^{(h+1)}=n\left(\sum _{i=1}^{n}{\frac {x_{i}}{1-(1-p^{(h)})e^{-\beta ^{(h)}x_{i}}}}\right)^{-1},} {\displaystyle \beta ^{(h+1)}=n\left(\sum _{i=1}^{n}{\frac {x_{i}}{1-(1-p^{(h)})e^{-\beta ^{(h)}x_{i}}}}\right)^{-1},}
p ( h + 1 ) = − n ( 1 − p ( h + 1 ) ) ln ⁡ ( p ( h + 1 ) ) ∑ i = 1 n { 1 − ( 1 − p ( h ) ) e − β ( h ) x i } − 1 . {\displaystyle p^{(h+1)}={\frac {-n(1-p^{(h+1)})}{\ln(p^{(h+1)})\sum _{i=1}^{n}\{1-(1-p^{(h)})e^{-\beta ^{(h)}x_{i}}\}^{-1}}}.} {\displaystyle p^{(h+1)}={\frac {-n(1-p^{(h+1)})}{\ln(p^{(h+1)})\sum _{i=1}^{n}\{1-(1-p^{(h)})e^{-\beta ^{(h)}x_{i}}\}^{-1}}}.}

Related distributions

[edit]

The EL distribution has been generalized to form the Weibull-logarithmic distribution.[3]

If X is defined to be the random variable which is the minimum of N independent realisations from an exponential distribution with rate parameter β, and if N is a realisation from a logarithmic distribution (where the parameter p in the usual parameterisation is replaced by (1 − p)), then X has the exponential-logarithmic distribution in the parameterisation used above.

References

[edit]
  1. ^ a b c Tahmasbi, R., Rezaei, S., (2008), "A two-parameter lifetime distribution with decreasing failure rate", Computational Statistics and Data Analysis, 52 (8), 3889-3901. doi:10.1016/j.csda.2007.12.002
  2. ^ Lewin, L. (1981) Polylogarithms and Associated Functions, North Holland, Amsterdam.
  3. ^ Ciumara, Roxana; Preda, Vasile (2009) "The Weibull-logarithmic distribution in lifetime analysis and its properties". In: L. Sakalauskas, C. Skiadas and E. K. Zavadskas (Eds.) Applied Stochastic Models and Data Analysis Archived 2011-05-18 at the Wayback Machine, The XIII International Conference, Selected papers. Vilnius, 2009 ISBN 978-9955-28-463-5
  • v
  • t
  • e
Probability distributions (list)
Discrete
univariate
with finite
support
  • Benford
  • Bernoulli
  • Beta-binomial
  • Binomial
  • Categorical
  • Hypergeometric
    • Negative
  • Poisson binomial
  • Rademacher
  • Soliton
  • Discrete uniform
  • Zipf
  • Zipf–Mandelbrot
with infinite
support
  • Beta negative binomial
  • Borel
  • Conway–Maxwell–Poisson
  • Discrete phase-type
  • Delaporte
  • Extended negative binomial
  • Flory–Schulz
  • Gauss–Kuzmin
  • Geometric
  • Logarithmic
  • Mixed Poisson
  • Negative binomial
  • Panjer
  • Parabolic fractal
  • Poisson
  • Skellam
  • Yule–Simon
  • Zeta
Continuous
univariate
supported on a
bounded interval
  • Arcsine
  • ARGUS
  • Balding–Nichols
  • Bates
  • Beta
    • Generalized
  • Beta rectangular
  • Continuous Bernoulli
  • Irwin–Hall
  • Kumaraswamy
  • Logit-normal
  • Noncentral beta
  • PERT
  • Power function
  • Raised cosine
  • Reciprocal
  • Triangular
  • U-quadratic
  • Uniform
  • Wigner semicircle
supported on a
semi-infinite
interval
  • Benini
  • Benktander 1st kind
  • Benktander 2nd kind
  • Beta prime
  • Burr
  • Chi
  • Chi-squared
    • Noncentral
    • Inverse
      • Scaled
  • Dagum
  • Davis
  • Erlang
    • Hyper
  • Exponential
    • Hyperexponential
    • Hypoexponential
    • Logarithmic
  • F
    • Noncentral
  • Folded normal
  • Fréchet
  • Gamma
    • Generalized
    • Inverse
  • gamma/Gompertz
  • Gompertz
    • Shifted
  • Half-logistic
  • Half-normal
  • Hotelling's T-squared
  • Hartman–Watson
  • Inverse Gaussian
    • Generalized
  • Kolmogorov
  • Lévy
  • Log-Cauchy
  • Log-Laplace
  • Log-logistic
  • Log-normal
  • Log-t
  • Lomax
  • Matrix-exponential
  • Maxwell–Boltzmann
  • Maxwell–Jüttner
  • Mittag-Leffler
  • Nakagami
  • Pareto
  • Phase-type
  • Poly-Weibull
  • Rayleigh
  • Relativistic Breit–Wigner
  • Rice
  • Truncated normal
  • type-2 Gumbel
  • Weibull
    • Discrete
  • Wilks's lambda
supported
on the whole
real line
  • Cauchy
  • Exponential power
  • Fisher's z
  • Kaniadakis κ-Gaussian
  • Gaussian q
  • Generalized hyperbolic
  • Generalized logistic (logistic-beta)
  • Generalized normal
  • Geometric stable
  • Gumbel
  • Holtsmark
  • Hyperbolic secant
  • Johnson's SU
  • Landau
  • Laplace
    • Asymmetric
  • Logistic
  • Noncentral t
  • Normal (Gaussian)
  • Normal-inverse Gaussian
  • Skew normal
  • Slash
  • Stable
  • Student's t
  • Tracy–Widom
  • Variance-gamma
  • Voigt
with support
whose type varies
  • Generalized chi-squared
  • Generalized extreme value
  • Generalized Pareto
  • Marchenko–Pastur
  • Kaniadakis κ-exponential
  • Kaniadakis κ-Gamma
  • Kaniadakis κ-Weibull
  • Kaniadakis κ-Logistic
  • Kaniadakis κ-Erlang
  • q-exponential
  • q-Gaussian
  • q-Weibull
  • Shifted log-logistic
  • Tukey lambda
Mixed
univariate
continuous-
discrete
  • Rectified Gaussian
Multivariate
(joint)
  • Discrete:
  • Ewens
  • Multinomial
    • Dirichlet
    • Negative
  • Continuous:
  • Dirichlet
    • Generalized
  • Multivariate Laplace
  • Multivariate normal
  • Multivariate stable
  • Multivariate t
  • Normal-gamma
    • Inverse
  • Matrix-valued:
  • LKJ
  • Matrix beta
  • Matrix F
  • Matrix normal
  • Matrix t
  • Matrix gamma
    • Inverse
  • Wishart
    • Normal
    • Inverse
    • Normal-inverse
    • Complex
  • Uniform distribution on a Stiefel manifold
Directional
Univariate (circular) directional
Circular uniform
Univariate von Mises
Wrapped normal
Wrapped Cauchy
Wrapped exponential
Wrapped asymmetric Laplace
Wrapped Lévy
Bivariate (spherical)
Kent
Bivariate (toroidal)
Bivariate von Mises
Multivariate
von Mises–Fisher
Bingham
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families
  • Circular
  • Compound Poisson
  • Elliptical
  • Exponential
  • Natural exponential
  • Location–scale
  • Maximum entropy
  • Mixture
  • Pearson
  • Tweedie
  • Wrapped
  • Category
  • Commons
Retrieved from "https://teknopedia.ac.id/w/index.php?title=Exponential-logarithmic_distribution&oldid=1217475503"
Categories:
  • Continuous distributions
  • Survival analysis
Hidden categories:
  • Webarchive template wayback links
  • Articles with short description
  • Short description matches Wikidata

  • indonesia
  • Polski
  • العربية
  • Deutsch
  • English
  • Español
  • Français
  • Italiano
  • مصرى
  • Nederlands
  • 日本語
  • Português
  • Sinugboanong Binisaya
  • Svenska
  • Українська
  • Tiếng Việt
  • Winaray
  • 中文
  • Русский
Sunting pranala
url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url
Pusat Layanan

UNIVERSITAS TEKNOKRAT INDONESIA | ASEAN's Best Private University
Jl. ZA. Pagar Alam No.9 -11, Labuhan Ratu, Kec. Kedaton, Kota Bandar Lampung, Lampung 35132
Phone: (0721) 702022
Email: pmb@teknokrat.ac.id