Epstein Files Full PDF

CLICK HERE
Technopedia Center
PMB University Brochure
Faculty of Engineering and Computer Science
S1 Informatics S1 Information Systems S1 Information Technology S1 Computer Engineering S1 Electrical Engineering S1 Civil Engineering

faculty of Economics and Business
S1 Management S1 Accountancy

Faculty of Letters and Educational Sciences
S1 English literature S1 English language education S1 Mathematics education S1 Sports Education
teknopedia

  • Registerasi
  • Brosur UTI
  • Kip Scholarship Information
  • Performance
Flag Counter
  1. World Encyclopedia
  2. Mean - Wikipedia
Mean - Wikipedia
From Wikipedia, the free encyclopedia
Numeric quantity representing the center of a collection of numbers
This article is about quantifying the concept of "typical value". For other uses, see Mean (disambiguation). For broader coverage of this topic, see Average. For the state of being mean or cruel, see Meanness.

A mean is a quantity representing the "center" of a collection of numbers and is intermediate to the extreme values of the set of numbers.[1] There are several kinds of means (or "measures of central tendency") in mathematics, especially in statistics. Each attempts to summarize or typify a given group of data, illustrating the magnitude and sign of the data set. Which of these measures is most illuminating depends on what is being measured, and on context and purpose.[2]

The arithmetic mean, also known as "arithmetic average", is the sum of the values divided by the number of values. The arithmetic mean of a set of numbers x1, x2, ..., xn is typically denoted using an overhead bar, x ¯ {\displaystyle {\bar {x}}} {\displaystyle {\bar {x}}}.[note 1] If the numbers are from observing a sample of a larger group, the arithmetic mean is termed the sample mean ( x ¯ {\displaystyle {\bar {x}}} {\displaystyle {\bar {x}}}) to distinguish it from the group mean (or expected value) of the underlying distribution, denoted μ {\displaystyle \mu } {\displaystyle \mu } or μ x {\displaystyle \mu _{x}} {\displaystyle \mu _{x}}.[note 2][3]

Outside probability and statistics, a wide range of other notions of mean are often used in geometry and mathematical analysis; examples are given below.

Types of means

[edit]

Pythagorean means

[edit]
Main article: Pythagorean means

In mathematics, the three classical Pythagorean means are the arithmetic mean (AM), the geometric mean (GM), and the harmonic mean (HM). These means were studied with proportions by Pythagoreans and later generations of Greek mathematicians[4] because of their importance in geometry and music.

Arithmetic mean (AM)

[edit]
Main article: Arithmetic mean

The arithmetic mean (or simply mean or average) of a list of numbers, is the sum of all of the numbers divided by their count. Similarly, the mean of a sample x 1 , x 2 , … , x n {\displaystyle x_{1},x_{2},\ldots ,x_{n}} {\displaystyle x_{1},x_{2},\ldots ,x_{n}}, usually denoted by x ¯ {\displaystyle {\bar {x}}} {\displaystyle {\bar {x}}}, is the sum of the sampled values divided by the number of items in the sample.

x ¯ = 1 n ∑ i = 1 n x i = x 1 + x 2 + ⋯ + x n n {\displaystyle {\bar {x}}={\frac {1}{n}}\sum _{i=1}^{n}{x_{i}}={\frac {x_{1}+x_{2}+\cdots +x_{n}}{n}}} {\displaystyle {\bar {x}}={\frac {1}{n}}\sum _{i=1}^{n}{x_{i}}={\frac {x_{1}+x_{2}+\cdots +x_{n}}{n}}}

For example, the arithmetic mean of five values: 4, 36, 45, 50, 75 is:

4 + 36 + 45 + 50 + 75 5 = 210 5 = 42. {\displaystyle {\frac {4+36+45+50+75}{5}}={\frac {210}{5}}=42.} {\displaystyle {\frac {4+36+45+50+75}{5}}={\frac {210}{5}}=42.}

Geometric mean (GM)

[edit]

The geometric mean is an average that is useful for sets of positive numbers, that are interpreted according to their product (as is the case with rates of growth) and not their sum (as is the case with the arithmetic mean):[1]

x ¯ = ( ∏ i = 1 n x i ) 1 n = ( x 1 x 2 ⋯ x n ) 1 n {\displaystyle {\bar {x}}=\left(\prod _{i=1}^{n}{x_{i}}\right)^{\frac {1}{n}}=\left(x_{1}x_{2}\cdots x_{n}\right)^{\frac {1}{n}}} {\displaystyle {\bar {x}}=\left(\prod _{i=1}^{n}{x_{i}}\right)^{\frac {1}{n}}=\left(x_{1}x_{2}\cdots x_{n}\right)^{\frac {1}{n}}}

For example, the geometric mean of five values: 4, 36, 45, 50, 75 is:

( 4 × 36 × 45 × 50 × 75 ) 1 5 = 24 300 000 5 = 30. {\displaystyle (4\times 36\times 45\times 50\times 75)^{\frac {1}{5}}={\sqrt[{5}]{24\;300\;000}}=30.} {\displaystyle (4\times 36\times 45\times 50\times 75)^{\frac {1}{5}}={\sqrt[{5}]{24\;300\;000}}=30.}

Harmonic mean (HM)

[edit]

The harmonic mean is an average which is useful for sets of numbers which are defined in relation to some unit, as in the case of speed (i.e., distance per unit of time):

x ¯ = n ( ∑ i = 1 n 1 x i ) − 1 {\displaystyle {\bar {x}}=n\left(\sum _{i=1}^{n}{\frac {1}{x_{i}}}\right)^{-1}} {\displaystyle {\bar {x}}=n\left(\sum _{i=1}^{n}{\frac {1}{x_{i}}}\right)^{-1}}

For example, the harmonic mean of the five values: 4, 36, 45, 50, 75 is

5 1 4 + 1 36 + 1 45 + 1 50 + 1 75 = 5 1 3 = 15. {\displaystyle {\frac {5}{{\tfrac {1}{4}}+{\tfrac {1}{36}}+{\tfrac {1}{45}}+{\tfrac {1}{50}}+{\tfrac {1}{75}}}}={\frac {5}{\;{\tfrac {1}{3}}\;}}=15.} {\displaystyle {\frac {5}{{\tfrac {1}{4}}+{\tfrac {1}{36}}+{\tfrac {1}{45}}+{\tfrac {1}{50}}+{\tfrac {1}{75}}}}={\frac {5}{\;{\tfrac {1}{3}}\;}}=15.}

If we have five pumps that can empty a tank of a certain size in respectively 4, 36, 45, 50, and 75 minutes, then the harmonic mean of 15 {\displaystyle 15} {\displaystyle 15} tells us that these five different pumps working together will pump at the same rate as five pumps that can each empty the tank in 15 {\displaystyle 15} {\displaystyle 15} minutes.

Relationship between AM, GM, and HM

[edit]
Proof without words of the AM–GM inequality:
PR is the diameter of a circle centered on O; its radius AO is the arithmetic mean of a and b. Triangle PGR is a right triangle from Thales's theorem, enabling use of the geometric mean theorem to show that its altitude GQ is the geometric mean. For any ratio a:b, AO ≥ GQ.
Main article: QM-AM-GM-HM inequalities

AM, GM, and HM of nonnegative real numbers satisfy these inequalities:[5]

A M ≥ G M ≥ H M {\displaystyle \mathrm {AM} \geq \mathrm {GM} \geq \mathrm {HM} \,} {\displaystyle \mathrm {AM} \geq \mathrm {GM} \geq \mathrm {HM} \,}

Equality holds if all the elements of the given sample are equal.

Statistical location

[edit]
See also: Average § Statistical location
Comparison of the arithmetic mean, median, and mode of two skewed (log-normal) distributions
Geometric visualization of the mode, median and mean of an arbitrary probability density function[6]

In descriptive statistics, the mean may be confused with the median, mode or mid-range, as any of these may colloquially be called an "average" (more formally, a measure of central tendency). The mean of a set of observations is the arithmetic average of the values; however, for skewed distributions, the mean is not necessarily the same as the middle value (median), or the most likely value (mode). For example, mean income is typically skewed upwards by a small number of people with very large incomes, so that the majority have an income lower than the mean. By contrast, the median income is the level at which half the population is below and half is above. The mode income is the most likely income and favors the larger number of people with lower incomes. While the median and mode are often more intuitive measures for such skewed data, many skewed distributions are in fact best described by their mean, including the exponential and Poisson distributions.

Mean of a probability distribution

[edit]
Main article: Expected value
See also: Population mean

The mean of a probability distribution is the long-run arithmetic average value of a random variable having that distribution. If the random variable is denoted by X {\displaystyle X} {\displaystyle X}, then the mean is also known as the expected value of X {\displaystyle X} {\displaystyle X} (denoted E ( X ) {\displaystyle E(X)} {\displaystyle E(X)}). For a discrete probability distribution, the mean is given by ∑ x P ( x ) {\displaystyle \textstyle \sum xP(x)} {\displaystyle \textstyle \sum xP(x)}, where the sum is taken over all possible values of the random variable and P ( x ) {\displaystyle P(x)} {\displaystyle P(x)} is the probability mass function. For a continuous distribution, the mean is ∫ − ∞ ∞ x f ( x ) d x {\displaystyle \textstyle \int _{-\infty }^{\infty }xf(x)\,dx} {\displaystyle \textstyle \int _{-\infty }^{\infty }xf(x)\,dx}, where f ( x ) {\displaystyle f(x)} {\displaystyle f(x)} is the probability density function.[7] In all cases, including those in which the distribution is neither discrete nor continuous, the mean is the Lebesgue integral of the random variable with respect to its probability measure. The mean need not exist or be finite; for some probability distributions the mean is infinite (+∞ or −∞), while for others the mean is undefined.

Generalized means

[edit]

Power mean

[edit]
Main article: Generalized mean

The generalized mean, also known as the power mean or Hölder mean, abstracts several other means. It is defined for positive numbers x 1 , … , x n {\displaystyle x_{1},\dots ,x_{n}} {\displaystyle x_{1},\dots ,x_{n}} by[1]

M p ( x 1 , … , x n ) = ( 1 n ∑ i = 1 n x i p ) 1 / p . {\displaystyle M_{p}(x_{1},\dots ,x_{n})=\left({\frac {1}{n}}\sum _{i=1}^{n}x_{i}^{p}\right)^{1/p}.} {\displaystyle M_{p}(x_{1},\dots ,x_{n})=\left({\frac {1}{n}}\sum _{i=1}^{n}x_{i}^{p}\right)^{1/p}.}

This, as a function of p {\displaystyle p} {\displaystyle p}, is well defined on R ∖ { 0 } {\displaystyle \mathbb {R} \setminus \{0\}} {\displaystyle \mathbb {R} \setminus \{0\}}, but can be extended continuously to R ∪ { − ∞ , + ∞ } {\displaystyle \mathbb {R} \cup \{-\infty ,+\infty \}} {\displaystyle \mathbb {R} \cup \{-\infty ,+\infty \}}.[8] By choosing different values for p {\displaystyle p} {\displaystyle p}, other well known means are retrieved.

Name Exponent Value
Minimum p = − ∞ {\displaystyle p=-\infty } {\displaystyle p=-\infty } min { x 1 , … , x n } {\displaystyle \min\{x_{1},\dots ,x_{n}\}} {\displaystyle \min\{x_{1},\dots ,x_{n}\}}
Harmonic mean p = − 1 {\displaystyle p=-1} {\displaystyle p=-1} n 1 x 1 + ⋯ + 1 x n {\displaystyle {\frac {n}{{\frac {1}{x_{1}}}+\dots +{\frac {1}{x_{n}}}}}} {\displaystyle {\frac {n}{{\frac {1}{x_{1}}}+\dots +{\frac {1}{x_{n}}}}}}
Geometric mean p = 0 {\displaystyle p=0} {\displaystyle p=0} x 1 … x n n {\displaystyle {\sqrt[{n}]{x_{1}\dots x_{n}}}} {\displaystyle {\sqrt[{n}]{x_{1}\dots x_{n}}}}
Arithmetic mean p = 1 {\displaystyle p=1} {\displaystyle p=1} x 1 + ⋯ + x n n {\displaystyle {\frac {x_{1}+\dots +x_{n}}{n}}} {\displaystyle {\frac {x_{1}+\dots +x_{n}}{n}}}
Root mean square p = 2 {\displaystyle p=2} {\displaystyle p=2} x 1 2 + ⋯ + x n 2 n {\displaystyle {\sqrt {\frac {x_{1}^{2}+\dots +x_{n}^{2}}{n}}}} {\displaystyle {\sqrt {\frac {x_{1}^{2}+\dots +x_{n}^{2}}{n}}}}
Cubic mean p = 3 {\displaystyle p=3} {\displaystyle p=3} x 1 3 + ⋯ + x n 3 n 3 {\displaystyle {\sqrt[{3}]{\frac {x_{1}^{3}+\dots +x_{n}^{3}}{n}}}} {\displaystyle {\sqrt[{3}]{\frac {x_{1}^{3}+\dots +x_{n}^{3}}{n}}}}
Maximum p = + ∞ {\displaystyle p=+\infty } {\displaystyle p=+\infty } max { x 1 , … , x n } {\displaystyle \max\{x_{1},\dots ,x_{n}\}} {\displaystyle \max\{x_{1},\dots ,x_{n}\}}

Quasi-arithmetic mean

[edit]
Main article: Quasi-arithmetic mean

A similar approach to the power mean is the f {\displaystyle f} {\displaystyle f}-mean, also known as the quasi-arithmetic mean. For an injective function f : I → R {\displaystyle f\colon I\rightarrow \mathbb {R} } {\displaystyle f\colon I\rightarrow \mathbb {R} } on an interval I ⊂ R {\displaystyle I\subset \mathbb {R} } {\displaystyle I\subset \mathbb {R} } and real numbers x 1 , … , x n ∈ I {\displaystyle x_{1},\dots ,x_{n}\in I} {\displaystyle x_{1},\dots ,x_{n}\in I} we define their f {\displaystyle f} {\displaystyle f}-mean as

M f ( x 1 , … , x n ) = f − 1 ( 1 n ∑ i = 1 n f ( x i ) ) . {\displaystyle M_{f}(x_{1},\dots ,x_{n})=f^{-1}\left({{\frac {1}{n}}\sum _{i=1}^{n}{f\left(x_{i}\right)}}\right).} {\displaystyle M_{f}(x_{1},\dots ,x_{n})=f^{-1}\left({{\frac {1}{n}}\sum _{i=1}^{n}{f\left(x_{i}\right)}}\right).}

By choosing different functions f {\displaystyle f} {\displaystyle f}, other well known means are retrieved.

Mean I {\displaystyle I} {\displaystyle I} Function[note 3]
Arithmetic mean R {\displaystyle \mathbb {R} } {\displaystyle \mathbb {R} } x ↦ x {\displaystyle x\mapsto x} {\displaystyle x\mapsto x}
Geometric mean ] 0 , + ∞ [ {\displaystyle ]0,+\infty [} {\displaystyle ]0,+\infty [}[note 4] x ↦ ln ⁡ ( x ) {\displaystyle x\mapsto \ln(x)} {\displaystyle x\mapsto \ln(x)}
Harmonic mean R ∖ { 0 } {\displaystyle \mathbb {R} \setminus \{0\}} {\displaystyle \mathbb {R} \setminus \{0\}} x ↦ x − 1 {\displaystyle x\mapsto x^{-1}} {\displaystyle x\mapsto x^{-1}}
Power mean R ∖ { 0 } {\displaystyle \mathbb {R} \setminus \{0\}} {\displaystyle \mathbb {R} \setminus \{0\}}[note 5] x ↦ x m {\displaystyle x\mapsto x^{m}} {\displaystyle x\mapsto x^{m}}

Weighted arithmetic mean

[edit]

The weighted arithmetic mean (or weighted average) is used if one wants to combine average values from different sized samples of the same population, and is define by[1]

x ¯ = ∑ i = 1 n w i x i ∑ i = 1 n w i , {\displaystyle {\bar {x}}={\frac {\sum _{i=1}^{n}{w_{i}x_{i}}}{\sum _{i=1}^{n}w_{i}}},} {\displaystyle {\bar {x}}={\frac {\sum _{i=1}^{n}{w_{i}x_{i}}}{\sum _{i=1}^{n}w_{i}}},}

where x i {\displaystyle x_{i}} {\displaystyle x_{i}} and w i {\displaystyle w_{i}} {\displaystyle w_{i}} are the mean and size of sample i {\displaystyle i} {\displaystyle i} respectively. In other applications, they represent a measure for the reliability of the influence upon the mean by the respective values.

Truncated mean

[edit]

Sometimes, a set of numbers might contain outliers (i.e., data values which are much lower or much higher than the others). Often, outliers are erroneous data caused by artifacts. In this case, one can use a truncated mean. It involves discarding given parts of the data at the top or the bottom end, typically an equal amount at each end and then taking the arithmetic mean of the remaining data. The number of values removed is indicated as a percentage of the total number of values.

Interquartile mean

[edit]

The interquartile mean is a specific example of a truncated mean. It is simply the arithmetic mean after removing the lowest and the highest quarter of values.

x ¯ = 2 n ∑ i = n 4 + 1 3 4 n x i {\displaystyle {\bar {x}}={\frac {2}{n}}\;\sum _{i={\frac {n}{4}}+1}^{{\frac {3}{4}}n}\!\!x_{i}} {\displaystyle {\bar {x}}={\frac {2}{n}}\;\sum _{i={\frac {n}{4}}+1}^{{\frac {3}{4}}n}\!\!x_{i}}

assuming the values have been ordered, so is simply a specific example of a weighted mean for a specific set of weights.

Mean of a function

[edit]
Main article: Mean of a function

In some circumstances, mathematicians may calculate a mean of an infinite (or even an uncountable) set of values. This can happen when calculating the mean value y avg {\displaystyle y_{\text{avg}}} {\displaystyle y_{\text{avg}}} of a function f ( x ) {\displaystyle f(x)} {\displaystyle f(x)}. Intuitively, a mean of a function can be thought of as calculating the area under a section of a curve, and then dividing by the length of that section. This can be done crudely by counting squares on graph paper, or more precisely by integration. The integration formula is written as:

y avg ( a , b ) = 1 b − a ∫ a b f ( x ) d x . {\displaystyle y_{\text{avg}}(a,b)={\frac {1}{b-a}}\int _{a}^{b}f(x)\,dx.} {\displaystyle y_{\text{avg}}(a,b)={\frac {1}{b-a}}\int _{a}^{b}f(x)\,dx.}

In this case, care must be taken to make sure that the integral converges. But the mean may be finite even if the function itself tends to infinity at some points.

Mean of angles and cyclical quantities

[edit]

Angles, times of day, and other cyclical quantities require modular arithmetic to add and otherwise combine numbers. These quantities can be averaged using the circular mean. In all these situations, it is possible that no mean exists, for example if all points being averaged are equidistant. Consider a color wheel—there is no mean to the set of all colors. Additionally, there may not be a unique mean for a set of values: for example, when averaging points on a clock, the mean of the locations of 11:00 and 13:00 is 12:00, but this location is equivalent to that of 00:00.

Fréchet mean

[edit]

The Fréchet mean gives a manner for determining the "center" of a mass distribution on a surface or, more generally, Riemannian manifold. Unlike many other means, the Fréchet mean is defined on a space whose elements cannot necessarily be added together or multiplied by scalars. It is sometimes also known as the Karcher mean (named after Hermann Karcher).

Triangular sets

[edit]

In geometry, there are thousands of different definitions for the center of a triangle that can all be interpreted as the mean of a triangular set of points in the plane.[9]

Swanson's rule

[edit]

This is an approximation to the mean for a moderately skewed distribution.[10] It is used in hydrocarbon exploration and is defined as:

m = 0.3 P 10 + 0.4 P 50 + 0.3 P 90 {\displaystyle m=0.3P_{10}+0.4P_{50}+0.3P_{90}} {\displaystyle m=0.3P_{10}+0.4P_{50}+0.3P_{90}}

where P 10 {\textstyle P_{10}} {\textstyle P_{10}}, P 50 {\textstyle P_{50}} {\textstyle P_{50}} and P 90 {\textstyle P_{90}} {\textstyle P_{90}} are the 10th, 50th and 90th percentiles of the distribution, respectively.

Other means

[edit]
Main category: Means
  • Arithmetic-geometric mean
  • Arithmetic-harmonic mean
  • Cesàro mean
  • Chisini mean
  • Contraharmonic mean
  • Elementary symmetric mean
  • Geometric-harmonic mean
  • Grand mean
  • Heinz mean
  • Heronian mean
  • Identric mean
  • Lehmer mean
  • Logarithmic mean
  • Moving average
  • Neuman–Sándor mean
  • Quasi-arithmetic mean
  • Root mean square (quadratic mean)
  • Rényi's entropy (a generalized f-mean)
  • Spherical mean
  • Stolarsky mean
  • Weighted geometric mean
  • Weighted harmonic mean

See also

[edit]
  • iconMathematics portal
  • Statistical dispersion
  • Central tendency
    • Median
    • Mode
  • Descriptive statistics
  • Kurtosis
  • Law of averages
  • Mean value theorem
  • Moment (mathematics)
  • Summary statistics
  • Taylor's law

Notes

[edit]
  1. ^ Pronounced "x bar".
  2. ^ Greek letter μ, pronounced /'mjuː/.
  3. ^ For this column we will use the "mapping arrow" to denote a function. Under this notation, the function f {\displaystyle f} {\displaystyle f} is denoted by x ↦ f ( x ) {\displaystyle x\mapsto f(x)} {\displaystyle x\mapsto f(x)}.
  4. ^ The geometric mean is well defined on [ 0 , + ∞ [ {\displaystyle [0,+\infty [} {\displaystyle [0,+\infty [}, but this is not captured by this approach.
  5. ^ For m ≠ 0 {\displaystyle m\neq 0} {\displaystyle m\neq 0} the domain can be R {\displaystyle \mathbb {R} } {\displaystyle \mathbb {R} }.

References

[edit]
  1. ^ a b c d "Mean | mathematics". Encyclopedia Britannica. Retrieved 2020-08-21.
  2. ^ Why Few Math Students Actually Understand the Meaning of Means (YouTube video). Math The World. 2024-08-27. Retrieved 2024-09-10.
  3. ^ Underhill, L.G.; Bradfield d. (1998) Introstat, Juta and Company Ltd. ISBN 0-7021-3838-X p. 181
  4. ^ Heath, Thomas. History of Ancient Greek Mathematics.
  5. ^ Djukić, Dušan; Janković, Vladimir; Matić, Ivan; Petrović, Nikola (2011-05-05). The IMO Compendium: A Collection of Problems Suggested for The International Mathematical Olympiads: 1959-2009 Second Edition. Springer Science & Business Media. ISBN 978-1-4419-9854-5.
  6. ^ "AP Statistics Review - Density Curves and the Normal Distributions". Archived from the original on 2 April 2015. Retrieved 16 March 2015.
  7. ^ Weisstein, Eric W. "Population Mean". mathworld.wolfram.com. Retrieved 2020-08-21.
  8. ^ P. S. Bullen: Handbook of Means and Their Inequalities. Dordrecht, Netherlands: Kluwer, 2003, pp. 176.
  9. ^ Narboux, Julien; Braun, David (2016). "Towards a certified version of the encyclopedia of triangle centers" (PDF). Mathematics in Computer Science. 10 (1): 57–73. doi:10.1007/s11786-016-0254-4. MR 3483261. under the guidance of Clark Kimberling, an electronic encyclopedia of triangle centers (ETC) has been developed, it contains more than 7000 centers and many properties of these points
  10. ^ Hurst A, Brown GC, Swanson RI (2000) Swanson's 30-40-30 Rule. American Association of Petroleum Geologists Bulletin 84(12) 1883-1891
  • v
  • t
  • e
Statistics
  • Outline
  • Index
Descriptive statistics
Continuous data
Center
  • Mean
    • Arithmetic
    • Arithmetic-Geometric
    • Contraharmonic
    • Cubic
    • Generalized/power
    • Geometric
    • Harmonic
    • Heronian
    • Heinz
    • Lehmer
  • Median
  • Mode
Dispersion
  • Average absolute deviation
  • Coefficient of variation
  • Interquartile range
  • Percentile
  • Range
  • Standard deviation
  • Variance
Shape
  • Central limit theorem
  • Moments
    • Kurtosis
    • L-moments
    • Skewness
Count data
  • Index of dispersion
Summary tables
  • Contingency table
  • Frequency distribution
  • Grouped data
Dependence
  • Partial correlation
  • Pearson product-moment correlation
  • Rank correlation
    • Kendall's τ
    • Spearman's ρ
  • Scatter plot
Graphics
  • Bar chart
  • Biplot
  • Box plot
  • Control chart
  • Correlogram
  • Fan chart
  • Forest plot
  • Histogram
  • Pie chart
  • Q–Q plot
  • Radar chart
  • Run chart
  • Scatter plot
  • Stem-and-leaf display
  • Violin plot
Data collection
Study design
  • Effect size
  • Missing data
  • Optimal design
  • Population
  • Replication
  • Sample size determination
  • Statistic
  • Statistical power
Survey methodology
  • Sampling
    • Cluster
    • Stratified
  • Opinion poll
  • Questionnaire
  • Standard error
Controlled experiments
  • Blocking
  • Factorial experiment
  • Interaction
  • Random assignment
  • Randomized controlled trial
  • Randomized experiment
  • Scientific control
Adaptive designs
  • Adaptive clinical trial
  • Stochastic approximation
  • Up-and-down designs
Observational studies
  • Cohort study
  • Cross-sectional study
  • Natural experiment
  • Quasi-experiment
Statistical inference
Statistical theory
  • Population
  • Statistic
  • Probability distribution
  • Sampling distribution
    • Order statistic
  • Empirical distribution
    • Density estimation
  • Statistical model
    • Model specification
    • Lp space
  • Parameter
    • location
    • scale
    • shape
  • Parametric family
    • Likelihood (monotone)
    • Location–scale family
    • Exponential family
  • Completeness
  • Sufficiency
  • Statistical functional
    • Bootstrap
    • U
    • V
  • Optimal decision
    • loss function
  • Efficiency
  • Statistical distance
    • divergence
  • Asymptotics
  • Robustness
Frequentist inference
Point estimation
  • Estimating equations
    • Maximum likelihood
    • Method of moments
    • M-estimator
    • Minimum distance
  • Unbiased estimators
    • Mean-unbiased minimum-variance
      • Rao–Blackwellization
      • Lehmann–Scheffé theorem
    • Median unbiased
  • Plug-in
Interval estimation
  • Confidence interval
  • Pivot
  • Likelihood interval
  • Prediction interval
  • Tolerance interval
  • Resampling
    • Bootstrap
    • Jackknife
Testing hypotheses
  • 1- & 2-tails
  • Power
    • Uniformly most powerful test
  • Permutation test
    • Randomization test
  • Multiple comparisons
Parametric tests
  • Likelihood-ratio
  • Score/Lagrange multiplier
  • Wald
Specific tests
  • Z-test (normal)
  • Student's t-test
  • F-test
Goodness of fit
  • Chi-squared
  • G-test
  • Kolmogorov–Smirnov
  • Anderson–Darling
  • Lilliefors
  • Jarque–Bera
  • Normality (Shapiro–Wilk)
  • Likelihood-ratio test
  • Model selection
    • Cross validation
    • AIC
    • BIC
Rank statistics
  • Sign
    • Sample median
  • Signed rank (Wilcoxon)
    • Hodges–Lehmann estimator
  • Rank sum (Mann–Whitney)
  • Nonparametric anova
    • 1-way (Kruskal–Wallis)
    • 2-way (Friedman)
    • Ordered alternative (Jonckheere–Terpstra)
  • Van der Waerden test
Bayesian inference
  • Bayesian probability
    • prior
    • posterior
  • Credible interval
  • Bayes factor
  • Bayesian estimator
    • Maximum posterior estimator
  • Correlation
  • Regression analysis
Correlation
  • Pearson product-moment
  • Partial correlation
  • Confounding variable
  • Coefficient of determination
Regression analysis
  • Errors and residuals
  • Regression validation
  • Mixed effects models
  • Simultaneous equations models
  • Multivariate adaptive regression splines (MARS)
  • Template:Least squares and regression analysis
Linear regression
  • Simple linear regression
  • Ordinary least squares
  • General linear model
  • Bayesian regression
Non-standard predictors
  • Nonlinear regression
  • Nonparametric
  • Semiparametric
  • Isotonic
  • Robust
  • Homoscedasticity and Heteroscedasticity
Generalized linear model
  • Exponential families
  • Logistic (Bernoulli) / Binomial / Poisson regressions
Partition of variance
  • Analysis of variance (ANOVA, anova)
  • Analysis of covariance
  • Multivariate ANOVA
  • Degrees of freedom
Categorical / multivariate / time-series / survival analysis
Categorical
  • Cohen's kappa
  • Contingency table
  • Graphical model
  • Log-linear model
  • McNemar's test
  • Cochran–Mantel–Haenszel statistics
Multivariate
  • Regression
  • Manova
  • Principal components
  • Canonical correlation
  • Discriminant analysis
  • Cluster analysis
  • Classification
  • Structural equation model
    • Factor analysis
  • Multivariate distributions
    • Elliptical distributions
      • Normal
Time-series
General
  • Decomposition
  • Trend
  • Stationarity
  • Seasonal adjustment
  • Exponential smoothing
  • Cointegration
  • Structural break
  • Granger causality
Specific tests
  • Dickey–Fuller
  • Johansen
  • Q-statistic (Ljung–Box)
  • Durbin–Watson
  • Breusch–Godfrey
Time domain
  • Autocorrelation (ACF)
    • partial (PACF)
  • Cross-correlation (XCF)
  • ARMA model
  • ARIMA model (Box–Jenkins)
  • Autoregressive conditional heteroskedasticity (ARCH)
  • Vector autoregression (VAR) (Autoregressive model (AR))
Frequency domain
  • Spectral density estimation
  • Fourier analysis
  • Least-squares spectral analysis
  • Wavelet
  • Whittle likelihood
Survival
Survival function
  • Kaplan–Meier estimator (product limit)
  • Proportional hazards models
  • Accelerated failure time (AFT) model
  • First hitting time
Hazard function
  • Nelson–Aalen estimator
Test
  • Log-rank test
Applications
Biostatistics
  • Bioinformatics
  • Clinical trials / studies
  • Epidemiology
  • Medical statistics
Engineering statistics
  • Chemometrics
  • Methods engineering
  • Probabilistic design
  • Process / quality control
  • Reliability
  • System identification
Social statistics
  • Actuarial science
  • Census
  • Crime statistics
  • Demography
  • Econometrics
  • Jurimetrics
  • National accounts
  • Official statistics
  • Population statistics
  • Psychometrics
Spatial statistics
  • Cartography
  • Environmental statistics
  • Geographic information system
  • Geostatistics
  • Kriging
  • Category
  • icon Mathematics portal
  • Commons
  • WikiProject
Authority control databases Edit this at Wikidata
International
  • GND
National
  • United States
  • Israel
Other
  • Yale LUX
Retrieved from "https://teknopedia.ac.id/w/index.php?title=Mean&oldid=1329667611"
Categories:
  • Means
  • Moments (mathematics)
Hidden categories:
  • Articles with short description
  • Short description matches Wikidata

  • indonesia
  • Polski
  • العربية
  • Deutsch
  • English
  • Español
  • Français
  • Italiano
  • مصرى
  • Nederlands
  • 日本語
  • Português
  • Sinugboanong Binisaya
  • Svenska
  • Українська
  • Tiếng Việt
  • Winaray
  • 中文
  • Русский
Sunting pranala
url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url
Pusat Layanan

UNIVERSITAS TEKNOKRAT INDONESIA | ASEAN's Best Private University
Jl. ZA. Pagar Alam No.9 -11, Labuhan Ratu, Kec. Kedaton, Kota Bandar Lampung, Lampung 35132
Phone: (0721) 702022
Email: pmb@teknokrat.ac.id