Epstein Files Full PDF

CLICK HERE
Technopedia Center
PMB University Brochure
Faculty of Engineering and Computer Science
S1 Informatics S1 Information Systems S1 Information Technology S1 Computer Engineering S1 Electrical Engineering S1 Civil Engineering

faculty of Economics and Business
S1 Management S1 Accountancy

Faculty of Letters and Educational Sciences
S1 English literature S1 English language education S1 Mathematics education S1 Sports Education
teknopedia

  • Registerasi
  • Brosur UTI
  • Kip Scholarship Information
  • Performance
Flag Counter
  1. World Encyclopedia
  2. Cointegration - Wikipedia
Cointegration - Wikipedia
From Wikipedia, the free encyclopedia
Statistical property of collections of time series data

In econometrics, cointegration is a statistical property that describes a long-run equilibrium relationship among two or more time series variables, even if the individual series are non-stationary (i.e., they contain stochastic trends). In such cases, the variables may drift in the short run, but their linear combination is stationary, implying that they move together over time and remain bound by a stable equilibrium.

More formally, if several time series are individually integrated of order d (meaning they require d differences to become stationary) but a linear combination of them is integrated of a lower order, then those time series are said to be cointegrated. That is, if (X,Y,Z) are each integrated of order d, and there exist coefficients a,b,c such that aX + bY + cZ is integrated of order less than d, then X, Y, and Z are cointegrated.

Cointegration is a crucial concept in time series analysis, particularly when dealing with variables that exhibit trends, such as macroeconomic data. In an influential paper,[1] Charles Nelson and Charles Plosser (1982) provided statistical evidence that many US macroeconomic time series (like GNP, wages, employment, etc.) have stochastic trends.

Introduction

[edit]

If two or more series are individually integrated (in the time series sense) but some linear combination of them has a lower order of integration, then the series are said to be cointegrated. A common example is where the individual series are first-order integrated (⁠ I ( 1 ) {\displaystyle I(1)} {\displaystyle I(1)}⁠) but some (cointegrating) vector of coefficients exists to form a stationary linear combination of them.

History

[edit]

The first to introduce and analyse the concept of spurious—or nonsense—regression was Udny Yule in 1926.[2] Before the 1980s, many economists used linear regressions on non-stationary time series data, which Nobel laureate Clive Granger and Paul Newbold showed to be a dangerous approach that could produce spurious correlation,[3] since standard detrending techniques can result in data that are still non-stationary.[4] Granger's 1987 paper with Robert Engle formalized the cointegrating vector approach, and coined the term.[5]

For integrated ⁠ I ( 1 ) {\displaystyle I(1)} {\displaystyle I(1)}⁠ processes, Granger and Newbold showed that de-trending does not work to eliminate the problem of spurious correlation, and that the superior alternative is to check for co-integration. Two series with ⁠ I ( 1 ) {\displaystyle I(1)} {\displaystyle I(1)}⁠ trends can be co-integrated only if there is a genuine relationship between the two. Thus the standard current methodology for time series regressions is to check all-time series involved for integration. If there are ⁠ I ( 1 ) {\displaystyle I(1)} {\displaystyle I(1)}⁠ series on both sides of the regression relationship, then it is possible for regressions to give misleading results.

The possible presence of cointegration must be taken into account when choosing a technique to test hypotheses concerning the relationship between two variables having unit roots (i.e. integrated of at least order one).[3] The usual procedure for testing hypotheses concerning the relationship between non-stationary variables was to run ordinary least squares (OLS) regressions on data which had been differenced. This method is biased if the non-stationary variables are cointegrated.

For example, regressing the consumption series for any country (e.g. Fiji) against the GNP for a randomly selected dissimilar country (e.g. Afghanistan) might give a high R-squared relationship (suggesting high explanatory power on Fiji's consumption from Afghanistan's GNP). This is called spurious regression: two integrated ⁠ I ( 1 ) {\displaystyle I(1)} {\displaystyle I(1)}⁠ series which are not directly causally related may nonetheless show a significant correlation.

Tests

[edit]

The six main methods for testing for cointegration are:

Engle–Granger two-step method

[edit]
See also: Error correction model § Engle and Granger 2-step approach

If x t {\displaystyle x_{t}} {\displaystyle x_{t}} and y t {\displaystyle y_{t}} {\displaystyle y_{t}} both have order of integration d=1 and are cointegrated, then a linear combination of them must be stationary for some value of β {\displaystyle \beta } {\displaystyle \beta } and u t {\displaystyle u_{t}} {\displaystyle u_{t}} . In other words:

y t − β x t = u t {\displaystyle y_{t}-\beta x_{t}=u_{t}\,} {\displaystyle y_{t}-\beta x_{t}=u_{t}\,}

where u t {\displaystyle u_{t}} {\displaystyle u_{t}} is stationary.

If β {\displaystyle \beta } {\displaystyle \beta } is known, we can test u t {\displaystyle u_{t}} {\displaystyle u_{t}} for stationarity with an Augmented Dickey–Fuller test or Phillips–Perron test. If β {\displaystyle \beta } {\displaystyle \beta } is unknown, we must first estimate it. This is typically done by using ordinary least squares (by regressing y t {\displaystyle y_{t}} {\displaystyle y_{t}} on x t {\displaystyle x_{t}} {\displaystyle x_{t}} and an intercept). Then, we can run an ADF test on u t {\displaystyle u_{t}} {\displaystyle u_{t}}. However, when β {\displaystyle \beta } {\displaystyle \beta } is estimated, the critical values of this ADF test are non-standard, and increase in absolute value as more regressors are included.[6]

If the variables are found to be cointegrated, a second-stage regression is conducted. This is a regression of Δ y t {\displaystyle \Delta y_{t}} {\displaystyle \Delta y_{t}} on the lagged regressors, Δ x t {\displaystyle \Delta x_{t}} {\displaystyle \Delta x_{t}} and the lagged residuals from the first stage, u ^ t − 1 {\displaystyle {\hat {u}}_{t-1}} {\displaystyle {\hat {u}}_{t-1}}. The second stage regression is given as: Δ y t = Δ x t b + α u t − 1 + ε t {\displaystyle \Delta y_{t}=\Delta x_{t}b+\alpha u_{t-1}+\varepsilon _{t}} {\displaystyle \Delta y_{t}=\Delta x_{t}b+\alpha u_{t-1}+\varepsilon _{t}}

If the variables are not cointegrated (if we cannot reject the null of no cointegration when testing u t {\displaystyle u_{t}} {\displaystyle u_{t}}), then α = 0 {\displaystyle \alpha =0} {\displaystyle \alpha =0} and we estimate a differences model: Δ y t = Δ x t b + ε t {\displaystyle \Delta y_{t}=\Delta x_{t}b+\varepsilon _{t}} {\displaystyle \Delta y_{t}=\Delta x_{t}b+\varepsilon _{t}}

Johansen test

[edit]

The Johansen test is a test for cointegration that allows for more than one cointegrating relationship, unlike the Engle–Granger method, but this test is subject to asymptotic properties, i.e. large samples. If the sample size is too small then the results will not be reliable and one should use Auto Regressive Distributed Lags (ARDL).[7][8]

Phillips–Ouliaris cointegration test

[edit]

Peter C. B. Phillips and Sam Ouliaris (1990) show that residual-based unit root tests applied to the estimated cointegrating residuals do not have the usual Dickey–Fuller distributions under the null hypothesis of no-cointegration.[9] Because of the spurious regression phenomenon under the null hypothesis, the distribution of these tests have asymptotic distributions that depend on (1) the number of deterministic trend terms and (2) the number of variables with which co-integration is being tested. These distributions are known as Phillips–Ouliaris distributions and critical values have been tabulated. In finite samples, a superior alternative to the use of these asymptotic critical value is to generate critical values from simulations.

Multicointegration

[edit]

In practice, cointegration is often used for two ⁠ I ( 1 ) {\displaystyle I(1)} {\displaystyle I(1)}⁠ series, but it is more generally applicable and can be used for variables integrated of higher order (to detect correlated accelerations or other second-difference effects). Multicointegration extends the cointegration technique beyond two variables, and occasionally to variables integrated at different orders.

Variable shifts in long time series

[edit]

Tests for cointegration assume that the cointegrating vector is constant during the period of study. In reality, it is possible that the long-run relationship between the underlying variables change (shifts in the cointegrating vector can occur). The reason for this might be technological progress, economic crises, changes in the people's preferences and behaviour accordingly, policy or regime alteration, and organizational or institutional developments. This is especially likely to be the case if the sample period is long. To take this issue into account, tests have been introduced for cointegration with one unknown structural break,[10] and tests for cointegration with two unknown breaks are also available.[11]

Bayesian inference

[edit]

Several Bayesian methods have been proposed to compute the posterior distribution of the number of cointegrating relationships and the cointegrating linear combinations.[12]

See also

[edit]
  • Error correction model
  • Granger causality
  • Stationary subspace analysis
  • Asymmetric cointegration

References

[edit]
  1. ^ Nelson, C.R; Plosser, C.I (1982). "Trends and random walks in macroeconomic time series". Journal of Monetary Economics. 10 (2): 139–162. doi:10.1016/0304-3932(82)90012-5.
  2. ^ Yule, U. (1926). "Why do we sometimes get nonsense-correlations between time series? - A study in sampling and the nature of time series". Journal of the Royal Statistical Society. 89 (1): 11–63. doi:10.2307/2341482. JSTOR 2341482. S2CID 126346450.
  3. ^ a b Granger, C.; Newbold, P. (1974). "Spurious Regressions in Econometrics". Journal of Econometrics. 2 (2): 111–120. CiteSeerX 10.1.1.353.2946. doi:10.1016/0304-4076(74)90034-7.
  4. ^ Granger, Clive (1981). "Some Properties of Time Series Data and Their Use in Econometric Model Specification". Journal of Econometrics. 16 (1): 121–130. doi:10.1016/0304-4076(81)90079-8.
  5. ^ Engle, Robert F.; Granger, Clive W. J. (1987). "Co-integration and error correction: Representation, estimation and testing" (PDF). Econometrica. 55 (2): 251–276. doi:10.2307/1913236. JSTOR 1913236.
  6. ^ MacKinnon, James G. (2010). "Critical values for cointegration tests". Queen's Economics Department Working Paper (1227) – via EconStor.
  7. ^ Giles, David (19 June 2013). "ARDL Models - Part II - Bounds Tests". Retrieved 4 August 2014.
  8. ^ Pesaran, M.H.; Shin, Y.; Smith, R.J. (2001). "Bounds testing approaches to the analysis of level relationships". Journal of Applied Econometrics. 16 (3): 289–326. doi:10.1002/jae.616. hdl:10983/25617.
  9. ^ Phillips, P. C. B.; Ouliaris, S. (1990). "Asymptotic Properties of Residual Based Tests for Cointegration" (PDF). Econometrica. 58 (1): 165–193. doi:10.2307/2938339. JSTOR 2938339. Archived from the original (PDF) on 2021-09-18. Retrieved 2019-12-14.
  10. ^ Gregory, Allan W.; Hansen, Bruce E. (1996). "Residual-based tests for cointegration in models with regime shifts" (PDF). Journal of Econometrics. 70 (1): 99–126. doi:10.1016/0304-4076(69)41685-7.
  11. ^ Hatemi-J, A. (2008). "Tests for cointegration with two unknown regime shifts with an application to financial market integration". Empirical Economics. 35 (3): 497–505. doi:10.1007/s00181-007-0175-9. S2CID 153437469.
  12. ^ Koop, G.; Strachan, R.; van Dijk, H.K.; Villani, M. (January 1, 2006). "Chapter 17: Bayesian Approaches to Cointegration". In Mills, T.C.; Patterson, K. (eds.). Handbook of Econometrics Vol.1 Econometric Theory. Palgrave Macmillan. pp. 871–898. ISBN 978-1-4039-4155-8.

Further reading

[edit]
  • Enders, Walter (2004). "Cointegration and Error-Correction Models". Applied Econometrics Time Series (Second ed.). New York: Wiley. pp. 319–386. ISBN 978-0-471-23065-6.
  • Hayashi, Fumio (2000). Econometrics. Princeton University Press. pp. 623–669. ISBN 978-0-691-01018-2.
  • Maddala, G. S.; Kim, In-Moo (1998). Unit Roots, Cointegration, and Structural Change. Cambridge University Press. pp. 155–248. ISBN 978-0-521-58782-2.
  • Murray, Michael P. (1994). "A Drunk and her Dog: An Illustration of Cointegration and Error Correction" (PDF). The American Statistician. 48 (1): 37–39. doi:10.1080/00031305.1994.10476017. An intuitive introduction to cointegration.
  • v
  • t
  • e
Statistics
  • Outline
  • Index
Descriptive statistics
Continuous data
Center
  • Mean
    • Arithmetic
    • Arithmetic-Geometric
    • Contraharmonic
    • Cubic
    • Generalized/power
    • Geometric
    • Harmonic
    • Heronian
    • Heinz
    • Lehmer
  • Median
  • Mode
Dispersion
  • Average absolute deviation
  • Coefficient of variation
  • Interquartile range
  • Percentile
  • Range
  • Standard deviation
  • Variance
Shape
  • Central limit theorem
  • Moments
    • Kurtosis
    • L-moments
    • Skewness
Count data
  • Index of dispersion
Summary tables
  • Contingency table
  • Frequency distribution
  • Grouped data
Dependence
  • Partial correlation
  • Pearson product-moment correlation
  • Rank correlation
    • Kendall's τ
    • Spearman's ρ
  • Scatter plot
Graphics
  • Bar chart
  • Biplot
  • Box plot
  • Control chart
  • Correlogram
  • Fan chart
  • Forest plot
  • Histogram
  • Pie chart
  • Q–Q plot
  • Radar chart
  • Run chart
  • Scatter plot
  • Stem-and-leaf display
  • Violin plot
Data collection
Study design
  • Effect size
  • Missing data
  • Optimal design
  • Population
  • Replication
  • Sample size determination
  • Statistic
  • Statistical power
Survey methodology
  • Sampling
    • Cluster
    • Stratified
  • Opinion poll
  • Questionnaire
  • Standard error
Controlled experiments
  • Blocking
  • Factorial experiment
  • Interaction
  • Random assignment
  • Randomized controlled trial
  • Randomized experiment
  • Scientific control
Adaptive designs
  • Adaptive clinical trial
  • Stochastic approximation
  • Up-and-down designs
Observational studies
  • Cohort study
  • Cross-sectional study
  • Natural experiment
  • Quasi-experiment
Statistical inference
Statistical theory
  • Population
  • Statistic
  • Probability distribution
  • Sampling distribution
    • Order statistic
  • Empirical distribution
    • Density estimation
  • Statistical model
    • Model specification
    • Lp space
  • Parameter
    • location
    • scale
    • shape
  • Parametric family
    • Likelihood (monotone)
    • Location–scale family
    • Exponential family
  • Completeness
  • Sufficiency
  • Statistical functional
    • Bootstrap
    • U
    • V
  • Optimal decision
    • loss function
  • Efficiency
  • Statistical distance
    • divergence
  • Asymptotics
  • Robustness
Frequentist inference
Point estimation
  • Estimating equations
    • Maximum likelihood
    • Method of moments
    • M-estimator
    • Minimum distance
  • Unbiased estimators
    • Mean-unbiased minimum-variance
      • Rao–Blackwellization
      • Lehmann–Scheffé theorem
    • Median unbiased
  • Plug-in
Interval estimation
  • Confidence interval
  • Pivot
  • Likelihood interval
  • Prediction interval
  • Tolerance interval
  • Resampling
    • Bootstrap
    • Jackknife
Testing hypotheses
  • 1- & 2-tails
  • Power
    • Uniformly most powerful test
  • Permutation test
    • Randomization test
  • Multiple comparisons
Parametric tests
  • Likelihood-ratio
  • Score/Lagrange multiplier
  • Wald
Specific tests
  • Z-test (normal)
  • Student's t-test
  • F-test
Goodness of fit
  • Chi-squared
  • G-test
  • Kolmogorov–Smirnov
  • Anderson–Darling
  • Lilliefors
  • Jarque–Bera
  • Normality (Shapiro–Wilk)
  • Likelihood-ratio test
  • Model selection
    • Cross validation
    • AIC
    • BIC
Rank statistics
  • Sign
    • Sample median
  • Signed rank (Wilcoxon)
    • Hodges–Lehmann estimator
  • Rank sum (Mann–Whitney)
  • Nonparametric anova
    • 1-way (Kruskal–Wallis)
    • 2-way (Friedman)
    • Ordered alternative (Jonckheere–Terpstra)
  • Van der Waerden test
Bayesian inference
  • Bayesian probability
    • prior
    • posterior
  • Credible interval
  • Bayes factor
  • Bayesian estimator
    • Maximum posterior estimator
  • Correlation
  • Regression analysis
Correlation
  • Pearson product-moment
  • Partial correlation
  • Confounding variable
  • Coefficient of determination
Regression analysis
  • Errors and residuals
  • Regression validation
  • Mixed effects models
  • Simultaneous equations models
  • Multivariate adaptive regression splines (MARS)
  • Template:Least squares and regression analysis
Linear regression
  • Simple linear regression
  • Ordinary least squares
  • General linear model
  • Bayesian regression
Non-standard predictors
  • Nonlinear regression
  • Nonparametric
  • Semiparametric
  • Isotonic
  • Robust
  • Homoscedasticity and Heteroscedasticity
Generalized linear model
  • Exponential families
  • Logistic (Bernoulli) / Binomial / Poisson regressions
Partition of variance
  • Analysis of variance (ANOVA, anova)
  • Analysis of covariance
  • Multivariate ANOVA
  • Degrees of freedom
Categorical / multivariate / time-series / survival analysis
Categorical
  • Cohen's kappa
  • Contingency table
  • Graphical model
  • Log-linear model
  • McNemar's test
  • Cochran–Mantel–Haenszel statistics
Multivariate
  • Regression
  • Manova
  • Principal components
  • Canonical correlation
  • Discriminant analysis
  • Cluster analysis
  • Classification
  • Structural equation model
    • Factor analysis
  • Multivariate distributions
    • Elliptical distributions
      • Normal
Time-series
General
  • Decomposition
  • Trend
  • Stationarity
  • Seasonal adjustment
  • Exponential smoothing
  • Cointegration
  • Structural break
  • Granger causality
Specific tests
  • Dickey–Fuller
  • Johansen
  • Q-statistic (Ljung–Box)
  • Durbin–Watson
  • Breusch–Godfrey
Time domain
  • Autocorrelation (ACF)
    • partial (PACF)
  • Cross-correlation (XCF)
  • ARMA model
  • ARIMA model (Box–Jenkins)
  • Autoregressive conditional heteroskedasticity (ARCH)
  • Vector autoregression (VAR) (Autoregressive model (AR))
Frequency domain
  • Spectral density estimation
  • Fourier analysis
  • Least-squares spectral analysis
  • Wavelet
  • Whittle likelihood
Survival
Survival function
  • Kaplan–Meier estimator (product limit)
  • Proportional hazards models
  • Accelerated failure time (AFT) model
  • First hitting time
Hazard function
  • Nelson–Aalen estimator
Test
  • Log-rank test
Applications
Biostatistics
  • Bioinformatics
  • Clinical trials / studies
  • Epidemiology
  • Medical statistics
Engineering statistics
  • Chemometrics
  • Methods engineering
  • Probabilistic design
  • Process / quality control
  • Reliability
  • System identification
Social statistics
  • Actuarial science
  • Census
  • Crime statistics
  • Demography
  • Econometrics
  • Jurimetrics
  • National accounts
  • Official statistics
  • Population statistics
  • Psychometrics
Spatial statistics
  • Cartography
  • Environmental statistics
  • Geographic information system
  • Geostatistics
  • Kriging
  • Category
  • icon Mathematics portal
  • Commons
  • WikiProject
Authority control databases Edit this at Wikidata
International
  • GND
National
  • United States
  • France
  • BnF data
  • Israel
Other
  • Yale LUX
Retrieved from "https://teknopedia.ac.id/w/index.php?title=Cointegration&oldid=1314427706"
Categories:
  • Mathematical finance
  • Time series
Hidden categories:
  • Articles with short description
  • Short description matches Wikidata

  • indonesia
  • Polski
  • العربية
  • Deutsch
  • English
  • Español
  • Français
  • Italiano
  • مصرى
  • Nederlands
  • 日本語
  • Português
  • Sinugboanong Binisaya
  • Svenska
  • Українська
  • Tiếng Việt
  • Winaray
  • 中文
  • Русский
Sunting pranala
url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url
Pusat Layanan

UNIVERSITAS TEKNOKRAT INDONESIA | ASEAN's Best Private University
Jl. ZA. Pagar Alam No.9 -11, Labuhan Ratu, Kec. Kedaton, Kota Bandar Lampung, Lampung 35132
Phone: (0721) 702022
Email: pmb@teknokrat.ac.id