Epstein Files Full PDF

CLICK HERE
Technopedia Center
PMB University Brochure
Faculty of Engineering and Computer Science
S1 Informatics S1 Information Systems S1 Information Technology S1 Computer Engineering S1 Electrical Engineering S1 Civil Engineering

faculty of Economics and Business
S1 Management S1 Accountancy

Faculty of Letters and Educational Sciences
S1 English literature S1 English language education S1 Mathematics education S1 Sports Education
teknopedia

  • Registerasi
  • Brosur UTI
  • Kip Scholarship Information
  • Performance
Flag Counter
  1. World Encyclopedia
  2. Quadrature amplitude modulation - Wikipedia
Quadrature amplitude modulation - Wikipedia
From Wikipedia, the free encyclopedia
(Redirected from 16QAM)
Family of digital modulation methods
"QAM" redirects here. For the digital television standard, see QAM (television). For other uses, see QAM (disambiguation).
Passband modulation
Analog modulation
  • AM
    • SM
    • SSB
  • Angle modulation
    • FM
    • PM
  • QAM
Digital modulation
  • ASK
  • APSK
  • CPM
  • FSK
  • MFSK
  • MSK
  • OOK
  • PPM
  • PSK
  • QAM
  • SC-FDE
  • TCM
  • TC-PAM
  • WDM
Hierarchical modulation
  • QAM
  • WDM
Spread spectrum
  • CSS
  • DSSS
  • FHSS
  • THSS
See also
  • Capacity-approaching codes
  • Demodulation
  • Line coding
  • Modem
  • AnM
  • PoM
  • PAM
  • PCM
  • PDM
  • PWM
  • ΔΣM
  • OFDM
  • FDM
  • Multiplexing
  • v
  • t
  • e

Quadrature amplitude modulation (QAM) is the name of a family of digital modulation methods and a related family of analog modulation methods widely used in modern telecommunications to transmit information. It conveys two analog message signals, or two digital bit streams, by changing (modulating) the amplitudes of two carrier waves, using the amplitude-shift keying (ASK) digital modulation scheme or amplitude modulation (AM) analog modulation scheme. The two carrier waves are of the same frequency and are out of phase with each other by 90°, a condition known as orthogonality or quadrature. The transmitted signal is created by adding the two carrier waves together. At the receiver, the two waves can be coherently separated (demodulated) because of their orthogonality. Another key property is that the modulations are low-frequency/low-bandwidth waveforms compared to the carrier frequency, which is known as the narrowband assumption.

In M-ary transmission amplitude-shift keying the phase is the same but with different amplitudes, while phase-shift keying has the same amplitude but different phases. Combining these concepts leads to QAM, where both amplitude and phase are modulated, or two binary PSK signals are combined with orthogonal carriers.[1]: 9, 422 

QAM is used extensively as a modulation scheme for digital communications systems, such as in 802.11 Wi-Fi standards. Arbitrarily high spectral efficiencies can be achieved with QAM by setting a suitable constellation size, limited only by the noise level and linearity of the communications channel.[2]  QAM is being used in optical fiber systems as bit rates increase; QAM16 and QAM64 can be optically emulated with a three-path interferometer.[3][4]

Demodulation

[edit]
icon
This section does not cite any sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Quadrature amplitude modulation" – news · newspapers · books · scholar · JSTOR
(December 2018) (Learn how and when to remove this message)
Analog QAM: PAL color bar signal on a vectorscope

In a QAM signal, one carrier lags the other by 90°, and its amplitude modulation is customarily referred to as the in-phase component, denoted by I(t). The other modulating function is the quadrature component, Q(t). So the composite waveform is mathematically modeled as:[1]: 434 

s s ( t ) ≜ sin ⁡ ( 2 π f c t ) I ( t )   +   sin ⁡ ( 2 π f c t + π 2 ) ⏟ cos ⁡ ( 2 π f c t ) Q ( t ) , {\displaystyle s_{s}(t)\triangleq \sin(2\pi f_{c}t)I(t)\ +\ \underbrace {\sin \left(2\pi f_{c}t+{\tfrac {\pi }{2}}\right)} _{\cos \left(2\pi f_{c}t\right)}\;Q(t),} {\displaystyle s_{s}(t)\triangleq \sin(2\pi f_{c}t)I(t)\ +\ \underbrace {\sin \left(2\pi f_{c}t+{\tfrac {\pi }{2}}\right)} _{\cos \left(2\pi f_{c}t\right)}\;Q(t),}     or:
s c ( t ) ≜ cos ⁡ ( 2 π f c t ) I ( t )   +   cos ⁡ ( 2 π f c t + π 2 ) ⏟ − sin ⁡ ( 2 π f c t ) Q ( t ) , {\displaystyle s_{c}(t)\triangleq \cos(2\pi f_{c}t)I(t)\ +\ \underbrace {\cos \left(2\pi f_{c}t+{\tfrac {\pi }{2}}\right)} _{-\sin \left(2\pi f_{c}t\right)}\;Q(t),} {\displaystyle s_{c}(t)\triangleq \cos(2\pi f_{c}t)I(t)\ +\ \underbrace {\cos \left(2\pi f_{c}t+{\tfrac {\pi }{2}}\right)} _{-\sin \left(2\pi f_{c}t\right)}\;Q(t),} Eq.1

where fc is the carrier frequency.  At the receiver, a coherent demodulator multiplies the received signal separately with both a cosine and sine signal to produce the received estimates of I(t) and Q(t). For example:

r ( t ) ≜ s c ( t ) cos ⁡ ( 2 π f c t ) = I ( t ) cos ⁡ ( 2 π f c t ) cos ⁡ ( 2 π f c t ) − Q ( t ) sin ⁡ ( 2 π f c t ) cos ⁡ ( 2 π f c t ) . {\displaystyle r(t)\triangleq s_{c}(t)\cos(2\pi f_{c}t)=I(t)\cos(2\pi f_{c}t)\cos(2\pi f_{c}t)-Q(t)\sin(2\pi f_{c}t)\cos(2\pi f_{c}t).} {\displaystyle r(t)\triangleq s_{c}(t)\cos(2\pi f_{c}t)=I(t)\cos(2\pi f_{c}t)\cos(2\pi f_{c}t)-Q(t)\sin(2\pi f_{c}t)\cos(2\pi f_{c}t).}

Using standard trigonometric identities, we can write this as:

r ( t ) = 1 2 I ( t ) [ 1 + cos ⁡ ( 4 π f c t ) ] − 1 2 Q ( t ) sin ⁡ ( 4 π f c t ) = 1 2 I ( t ) + 1 2 [ I ( t ) cos ⁡ ( 4 π f c t ) − Q ( t ) sin ⁡ ( 4 π f c t ) ] . {\displaystyle {\begin{aligned}r(t)&={\tfrac {1}{2}}I(t)\left[1+\cos(4\pi f_{c}t)\right]-{\tfrac {1}{2}}Q(t)\sin(4\pi f_{c}t)\\&={\tfrac {1}{2}}I(t)+{\tfrac {1}{2}}\left[I(t)\cos(4\pi f_{c}t)-Q(t)\sin(4\pi f_{c}t)\right].\end{aligned}}} {\displaystyle {\begin{aligned}r(t)&={\tfrac {1}{2}}I(t)\left[1+\cos(4\pi f_{c}t)\right]-{\tfrac {1}{2}}Q(t)\sin(4\pi f_{c}t)\\&={\tfrac {1}{2}}I(t)+{\tfrac {1}{2}}\left[I(t)\cos(4\pi f_{c}t)-Q(t)\sin(4\pi f_{c}t)\right].\end{aligned}}}

Low-pass filtering r(t) removes the high frequency terms (containing 4πfct), leaving only the I(t) term. This filtered signal is unaffected by Q(t), showing that the in-phase component can be received independently of the quadrature component.  Similarly, we can multiply sc(t) by a sine wave and then low-pass filter to extract Q(t).

The graphs of the sine (solid red) and cosine (dotted blue) functions are sinusoids of different phases.

The addition of two sinusoids is a linear operation that creates no new frequency components. So the bandwidth of the composite signal is comparable to the bandwidth of the DSB (double-sideband) components. Effectively, the spectral redundancy of DSB enables a doubling of the information capacity using this technique. This comes at the expense of demodulation complexity. In particular, a DSB signal has zero-crossings at a regular frequency, which makes it easy to recover the phase of the carrier sinusoid. It is said to be self-clocking. But the sender and receiver of a quadrature-modulated signal must share a clock or otherwise send a clock signal. If the clock phases drift apart, the demodulated I and Q signals bleed into each other, yielding crosstalk. In this context, the clock signal is called a "phase reference". Clock synchronization is typically achieved by transmitting a burst subcarrier or a pilot signal. The phase reference for NTSC, for example, is included within its colorburst signal.

Analog QAM is used in:

  • NTSC and PAL analog color television systems, where the I- and Q-signals carry the components of chroma (colour) information. The QAM carrier phase is recovered from a special colorburst transmitted at the beginning of each scan line.
  • C-QUAM ("Compatible QAM") is used in AM stereo radio to carry the stereo difference information.

Fourier analysis

[edit]

Applying Euler's formula to the sinusoids in Eq.1, the positive-frequency portion of sc (or analytic representation) is:

s c ( t ) + = 1 2 e i 2 π f c t [ I ( t ) + i Q ( t ) ] ⟹ F 1 2 [ I   ^ ( f − f c ) + e i π / 2 Q ^ ( f − f c ) ] , {\displaystyle s_{c}(t)_{+}={\tfrac {1}{2}}e^{i2\pi f_{c}t}[I(t)+iQ(t)]\quad {\stackrel {\mathcal {F}}{\Longrightarrow }}\quad {\tfrac {1}{2}}\left[{\widehat {I\ }}(f-f_{c})+e^{i\pi /2}{\widehat {Q}}(f-f_{c})\right],} {\displaystyle s_{c}(t)_{+}={\tfrac {1}{2}}e^{i2\pi f_{c}t}[I(t)+iQ(t)]\quad {\stackrel {\mathcal {F}}{\Longrightarrow }}\quad {\tfrac {1}{2}}\left[{\widehat {I\ }}(f-f_{c})+e^{i\pi /2}{\widehat {Q}}(f-f_{c})\right],}

where F {\displaystyle {\mathcal {F}}} {\displaystyle {\mathcal {F}}} denotes the Fourier transform, and ︿I and ︿Q are the transforms of I(t) and Q(t). This result represents the sum of two DSB-SC signals with the same center frequency. The factor of i (= eiπ/2) represents the 90° phase shift that enables their individual demodulations.

Digital QAM

[edit]
Digital 16-QAM with example symbols
Digital 16-QAM with example symbols
Constellation points for 4-QAM, 16-QAM, 32-QAM, and 64-QAM overlapped

As in many digital modulation schemes, the constellation diagram is useful for QAM. In QAM, the constellation points are usually arranged in a square grid with equal vertical and horizontal spacing, although other configurations are possible (e.g. a hexagonal or triangular grid). In digital telecommunications the data is usually binary, so the number of points in the grid is typically a power of 2 (2, 4, 8, …), corresponding to the number of bits per symbol. The simplest and most commonly used QAM constellations consist of points arranged in a square, i.e. 16-QAM, 64-QAM and 256-QAM (even powers of two). Non-square constellations, such as Cross-QAM, can offer greater efficiency but are rarely used because of the cost of increased modem complexity.[1]

By moving to a higher-order constellation, it is possible to transmit more bits per symbol. However, if the mean energy of the constellation is to remain the same (by way of making a fair comparison), the points must be closer together and are thus more susceptible to noise and other corruption; this results in a higher bit error rate and so higher-order QAM can deliver more data less reliably than lower-order QAM, for constant mean constellation energy. Using higher-order QAM without increasing the bit error rate requires a higher signal-to-noise ratio (SNR) by increasing signal energy, reducing noise, or both.

If data rates beyond those offered by 8-PSK are required, it is more usual to move to QAM since it achieves a greater distance between adjacent points in the I-Q plane by distributing the points more evenly. The complicating factor is that the points are no longer all the same amplitude and so the demodulator must now correctly detect both phase and amplitude, rather than just phase.

64-QAM and 256-QAM are often used in digital cable television and cable modem applications. In the United States, 64-QAM and 256-QAM are the mandated modulation schemes for digital cable (see QAM tuner) as standardised by the SCTE in the standard ANSI/SCTE 07 2013. In the UK, 64-QAM is used for digital terrestrial television (Freeview) whilst 256-QAM is used for Freeview-HD.

Bit-loading (bits per QAM constellation) on an ADSL line

Communication systems designed to achieve very high levels of spectral efficiency usually employ very dense QAM constellations. For example is ADSL technology for copper twisted pairs, whose constellation size goes up to 32768-QAM (in ADSL terminology this is referred to as bit-loading, or bit per tone, 32768-QAM being equivalent to 15 bits per tone).[5]

Ultra-high capacity microwave backhaul systems also use 1024-QAM.[6] With 1024-QAM vendors can obtain gigabit capacity in a single 56 MHz channel.[6]

Interference and noise

[edit]

In moving to a higher order QAM constellation (higher data rate and mode) in hostile RF/microwave QAM application environments, such as in broadcasting or telecommunications, multipath interference typically increases. There is a spreading of the spots in the constellation, decreasing the separation between adjacent states, making it difficult for the receiver to decode the signal appropriately. In other words, there is reduced noise immunity. There are several test parameter measurements which help determine an optimal QAM mode for a specific operating environment. The following three are most significant:[7]

  • Carrier/interference ratio
  • Carrier-to-noise ratio
  • Threshold-to-noise ratio

Technologies that increase noise resistance include adaptive coding and modulation (ACM) and XPIC.[6]

See also

[edit]
  • Amplitude and phase-shift keying or asymmetric phase-shift keying (APSK)
  • Carrierless amplitude phase modulation (CAP)
  • Circle packing § Applications
  • Error correction code
  • In-phase and quadrature components
  • Modulation for other examples of modulation techniques
  • Phase-shift keying
  • QAM tuner for HDTV
  • Random modulation

References

[edit]
  1. ^ a b c Xiong, Fuqin (2000). Digital Modulation Techniques. Norwood: Artech House. pp. 426–432. ISBN 9780890069707.
  2. ^ "Digital Modulation Efficiencies". Barnard Microsystems. Archived from the original on 2011-04-30.
  3. ^ "Ciena tests 200G via 16-QAM with Japan-U.S. Cable Network". lightwave. April 17, 2014. Archived from the original on 8 November 2016. Retrieved 7 November 2016.
  4. ^ Kylia products Archived July 13, 2011, at the Wayback Machine, dwdm mux demux, 90 degree optical hybrid, d(q) psk demodulatorssingle polarization
  5. ^ "G.992.3 : Asymmetric digital subscriber line transceivers 2 (ADSL2)". www.itu.int. Constellation mapper - maximum number of bits per constellation BIMAX ≤ 15. Retrieved 2024-10-09.{{cite web}}: CS1 maint: others (link)
  6. ^ a b c "TrangoLink Apex Orion - Trango Systems". www.trangosys.com. Archived from the original on 2012-03-15.
  7. ^ Howard Friedenberg and Sunil Naik. "Hitless Space Diversity STL Enables IP+Audio in Narrow STL Bands" (PDF). 2005 National Association of Broadcasters Annual Convention. Archived from the original (PDF) on March 23, 2006. Retrieved April 17, 2005.

Further reading

[edit]
  • Sun, Jonqyin (May 2014). "Linear diversity analysis for QAM in Rician fading channels". 2014 23rd Wireless and Optical Communication Conference (WOCC). pp. 1–3. doi:10.1109/WOCC.2014.6839960. ISBN 978-1-4799-5249-6.
  • Proakis, John G. (1995). Digital Communications (3rd ed.). New York: McGraw-Hill. ISBN 9780070517264.

External links

[edit]
Wikimedia Commons has media related to Quadrature amplitude modulation.
  • QAM Demodulation
  • Interactive webdemo of QAM constellation with additive noise Institute of Telecommunicatons, University of Stuttgart
  • QAM bit error rate for AWGN channel – online experiment
  • How imperfections affect QAM constellation
  • Microwave Phase Shifters Overview by Herley General Microwave
  • Simulation of dual-polarization QPSK (DP-QPSK) for 100G optical transmission
  • v
  • t
  • e
Analog television broadcasting topics
Systems
  • 180-line
  • 343-line
  • 375-line
  • 405-line (System A)
  • 441-line
  • 455-line
  • 525-line (System M)
  • 625-line (System B, System C, System D, System G, System H, System I, System K, System L, System N)
  • 819-line (System E, System F)
Color systems
  • NTSC
  • NTSC-J
  • Clear-Vision
  • PAL
  • PAL-M
  • PAL-S
  • PALplus
  • SECAM
Video
  • Back porch and front porch
  • Black level
  • Blanking level
  • Chrominance
  • Chrominance subcarrier
  • Colorburst
  • Color killer
  • Color TV
  • Composite video
  • Frame (video)
  • Horizontal scan rate
  • Horizontal blanking interval
  • Luma
  • Nominal analogue blanking
  • Overscan
  • Raster scan
  • Safe area
  • Television lines
  • Vertical blanking interval
  • White clipper
Sound
  • Multichannel Television Sound
  • NICAM
  • Sound-in-Syncs
  • Zweikanalton
Modulation
  • Frequency modulation
  • Quadrature amplitude modulation
  • Vestigial sideband modulation (VSB)
Transmission
  • Amplifiers
  • Antenna (radio)
  • Broadcast transmitter/Transmitter station
  • Cavity amplifier
  • Differential gain
  • Differential phase
  • Diplexer
  • Dipole antenna
  • Dummy load
  • Frequency mixer
  • Intercarrier method
  • Intermediate frequency
  • Output power of an analog TV transmitter
  • Pre-emphasis
  • Residual carrier
  • Split sound system
  • Superheterodyne transmitter
  • Television receive-only
  • Direct-broadcast satellite television
  • Television transmitter
  • Terrestrial television
  • Transposer
  • Digital television transition
Frequencies & bands
  • Frequency offset
  • Microwave transmission
  • Television channel frequencies
  • UHF
  • VHF
Propagation
  • Beam tilt
  • Distortion
  • Earth bulge
  • Field strength in free space
  • Noise (electronics)
  • Null fill
  • Path loss
  • Radiation pattern
  • Skew
  • Television interference
Testing
  • Distortionmeter
  • Field strength meter
  • Vectorscope
  • VIT signals
  • Zero reference pulse
Artifacts
  • Dot crawl
  • Ghosting
  • Hanover bars
  • Sparklies
  • v
  • t
  • e
Telecommunications
History
  • Beacon
  • Broadcasting
  • Cable protection system
  • Cable TV
  • Communications satellite
  • Computer network
  • Data compression
    • audio
    • DCT
    • image
    • video
  • Digital media
    • Internet video
    • online video platform
    • social media
    • streaming
  • Drums
  • Edholm's law
  • Electrical telegraph
  • Fax
  • Heliographs
  • Hydraulic telegraph
  • Information Age
  • Information revolution
  • Internet
  • Mass media
  • Mobile phone
    • Smartphone
  • Optical telecommunication
  • Optical telegraphy
  • Pager
  • Photophone
  • Prepaid mobile phone
  • Radio
  • Radiotelephone
  • Satellite communications
  • Semaphore
    • Phryctoria
  • Semiconductor
    • device
    • MOSFET
    • transistor
  • Smoke signals
  • Telecommunications history
  • Telautograph
  • Telegraphy
  • Teleprinter (teletype)
  • Telephone
    • history
    • The Telephone Cases
  • Television
    • digital
    • streaming
  • Undersea telegraph line
  • Videotelephony
  • Whistled language
  • Wireless revolution
Pioneers
  • Nasir Ahmed
  • Edwin Howard Armstrong
  • Mohamed M. Atalla
  • John Logie Baird
  • Paul Baran
  • John Bardeen
  • Alexander Graham Bell
  • Emile Berliner
  • Tim Berners-Lee
  • Francis Blake
  • Jagadish Chandra Bose
  • Charles Bourseul
  • Walter Houser Brattain
  • Vint Cerf
  • Claude Chappe
  • Yogen Dalal
  • Donald Davies
  • Daniel Davis Jr.
  • Amos Dolbear
  • Thomas Edison
  • Philo Farnsworth
  • Reginald Fessenden
  • Lee de Forest
  • Elisha Gray
  • Oliver Heaviside
  • Robert Hooke
  • Erna Schneider Hoover
  • Harold Hopkins
  • Gardiner Greene Hubbard
  • Bob Kahn
  • Dawon Kahng
  • Charles K. Kao
  • Narinder Singh Kapany
  • Hedy Lamarr
  • Roberto Landell
  • Innocenzo Manzetti
  • Guglielmo Marconi
  • Robert Metcalfe
  • Antonio Meucci
  • Samuel Morse
  • Jun-ichi Nishizawa
  • Charles Grafton Page
  • Radia Perlman
  • Alexander Stepanovich Popov
  • Tivadar Puskás
  • Johann Philipp Reis
  • Claude Shannon
  • Almon Brown Strowger
  • Henry Sutton
  • Charles Sumner Tainter
  • Nikola Tesla
  • Camille Tissot
  • Alfred Vail
  • Thomas A. Watson
  • Charles Wheatstone
  • Vladimir K. Zworykin
  • Internet pioneers
Transmission
media
  • Coaxial cable
  • Fiber-optic communication
    • optical fiber
  • Free-space optical communication
  • Molecular communication
  • Radio waves
    • wireless
  • Transmission line
    • telecommunication circuit
Network topology
and switching
  • Bandwidth
  • Links
  • Network switching
    • circuit
    • packet
  • Nodes
    • terminal
  • Telephone exchange
Multiplexing
  • Space-division
  • Frequency-division
  • Time-division
  • Polarization-division
  • Orbital angular-momentum
  • Code-division
Concepts
  • Communication protocol
  • Computer network
  • Data transmission
  • Store and forward
  • Telecommunications equipment
Types of network
  • Cellular network
  • Ethernet
  • ISDN
  • LAN
  • Mobile
  • NGN
  • Public Switched Telephone
  • Radio
  • Television
  • Telex
  • UUCP
  • WAN
  • Wireless network
Notable networks
  • ARPANET
  • BITNET
  • CYCLADES
  • FidoNet
  • Internet
  • Internet2
  • JANET
  • NPL network
  • TANet
  • Toasternet
  • Usenet
Locations
  • Africa
  • Americas
    • North
    • South
  • Antarctica
  • Asia
  • Europe
  • Oceania
  • Global telecommunications regulation bodies
  • Telecommunication portal
  • Category
  • Outline
  • Commons
Retrieved from "https://teknopedia.ac.id/w/index.php?title=Quadrature_amplitude_modulation&oldid=1334403331"
Categories:
  • Radio modulation modes
  • Data transmission
Hidden categories:
  • Webarchive template wayback links
  • CS1 maint: others
  • Articles with short description
  • Short description is different from Wikidata
  • Articles needing additional references from December 2018
  • All articles needing additional references
  • Commons category link is on Wikidata

  • indonesia
  • Polski
  • العربية
  • Deutsch
  • English
  • Español
  • Français
  • Italiano
  • مصرى
  • Nederlands
  • 日本語
  • Português
  • Sinugboanong Binisaya
  • Svenska
  • Українська
  • Tiếng Việt
  • Winaray
  • 中文
  • Русский
Sunting pranala
url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url
Pusat Layanan

UNIVERSITAS TEKNOKRAT INDONESIA | ASEAN's Best Private University
Jl. ZA. Pagar Alam No.9 -11, Labuhan Ratu, Kec. Kedaton, Kota Bandar Lampung, Lampung 35132
Phone: (0721) 702022
Email: pmb@teknokrat.ac.id