Epstein Files Full PDF

CLICK HERE
Technopedia Center
PMB University Brochure
Faculty of Engineering and Computer Science
S1 Informatics S1 Information Systems S1 Information Technology S1 Computer Engineering S1 Electrical Engineering S1 Civil Engineering

faculty of Economics and Business
S1 Management S1 Accountancy

Faculty of Letters and Educational Sciences
S1 English literature S1 English language education S1 Mathematics education S1 Sports Education
teknopedia

  • Registerasi
  • Brosur UTI
  • Kip Scholarship Information
  • Performance
Flag Counter
  1. World Encyclopedia
  2. Power management - Wikipedia
Power management - Wikipedia
From Wikipedia, the free encyclopedia
Feature of some electrical appliances
For management of energy in various contexts, see energy management.
This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (June 2008) (Learn how and when to remove this message)

Power management is a feature of some electrical appliances, especially copiers, computers, computer CPUs, computer GPUs and computer peripherals such as monitors and printers, that turns off the power or switches the system to a low-power state when inactive. In computing this is known as PC power management and is built around a standard called ACPI which superseded APM. All recent computers have ACPI support.

Motivations

[edit]

PC power management for computer systems is desired for many reasons, particularly:

  • Reduce overall energy consumption
  • Prolong battery life for portable and embedded systems
  • Reduce cooling requirements
  • Reduce noise
  • Reduce operating costs for energy and cooling

Lower power consumption also means lower heat dissipation, which increases system stability, and less energy use, which saves money and reduces the impact on the environment.

Processor level techniques

[edit]

The power management for microprocessors can be done over the whole processor, or in specific components, such as cache memory and main memory.

With dynamic voltage scaling and dynamic frequency scaling, the CPU core voltage, clock rate, or both, can be altered to decrease power consumption at the price of potentially lower performance. This is sometimes done in real time to optimize the power-performance tradeoff.

Examples:

  • AMD Cool'n'Quiet
  • AMD PowerNow![1]
  • IBM EnergyScale[2]
  • Intel SpeedStep
  • Transmeta LongRun and LongRun2
  • VIA LongHaul (PowerSaver)

Additionally, processors can selectively power off internal circuitry (power gating). For example:

  • Newer Intel Core processors support ultra-fine power control over the functional units within the processors.
  • AMD CoolCore technology get more efficient performance by dynamically activating or turning off parts of the processor.[3]

Intel VRT technology split the chip into a 3.3V I/O section and a 2.9V core section. The lower core voltage reduces power consumption.

Heterogeneous computing

[edit]

ARM's big.LITTLE architecture can migrate processes between faster "big" cores and more power efficient "LITTLE" cores.

Operating system level: hibernation

[edit]
Main article: Hibernation (computing)

When a computer system hibernates it saves the contents of the RAM to disk and powers down the machine. On startup it reloads the data. This allows the system to be completely powered off while in hibernate mode. This requires a file the size of the installed RAM to be placed on the hard disk, potentially using up space even when not in hibernate mode. Hibernate mode is enabled by default in some versions of Windows and can be disabled in order to recover this disk space.

In GPUs

[edit]

Graphics processing unit (GPUs) are used together with a CPU to accelerate computing in variety of domains revolving around scientific, analytics, engineering, consumer and enterprise applications.[4] All of this comes with some drawbacks, the high computing capability of GPUs comes at the cost of high power dissipation. Much research has been done over the power dissipation issue of GPUs and many techniques have been proposed to address this issue. Dynamic voltage scaling/dynamic frequency scaling (DVFS) and clock gating are two commonly used techniques for reducing dynamic power in GPUs.

DVFS techniques

[edit]

Experiments show that conventional processor DVFS policy can achieve power reduction of embedded GPUs with reasonable performance degradation.[5] New directions for designing effective DVFS schedulers for heterogeneous systems are also being explored.[6] A heterogeneous CPU-GPU architecture, GreenGPU[7] is presented which employs DVFS in a synchronized way, both for GPU and CPU. GreenGPU is implemented using the CUDA framework on a real physical testbed with Nvidia GeForce GPUs and AMD Phenom II CPUs. Experimentally it is shown that the GreenGPU achieves 21.04% average energy savings and outperforms several well-designed baselines. For the mainstream GPUs which are extensively used in all kinds of commercial and personal applications several DVFS techniques exist and are built into the GPUs alone, AMD PowerTune and AMD ZeroCore Power are the two dynamic frequency scaling technologies for AMD graphic cards. Practical tests showed that reclocking a GeForce GTX 480 can achieve a 28% lower power consumption while only decreasing performance by 1% for a given task.[8]

Power gating techniques

[edit]

Much research has been done on the dynamic power reduction with the use of DVFS techniques. However, as technology continues to shrink, leakage power will become a dominant factor.[9] Power gating is a commonly used circuit technique to remove leakage by turning off the supply voltage of unused circuits. Power gating incurs energy overhead; therefore, unused circuits need to remain idle long enough to compensate this overheads. A novel micro-architectural technique[10] for run-time power-gating caches of GPUs saves leakage energy. Based on experiments on 16 different GPU workloads, the average energy savings achieved by the proposed technique is 54%. Shaders are the most power hungry component of a GPU, a predictive shader shut down power gating technique[11] achieves up to 46% leakage reduction on shader processors. The Predictive Shader Shutdown technique exploits workload variation across frames to eliminate leakage in shader clusters. Another technique called Deferred Geometry Pipeline seeks to minimize leakage in fixed-function geometry units by utilizing an imbalance between geometry and fragment computation across batches which removes up to 57% of the leakage in the fixed-function geometry units. A simple time-out power gating method can be applied to non-shader execution units which eliminates 83.3% of the leakage in non-shader execution units on average. All the three techniques stated above incur negligible performance degradation, less than 1%.[12]

Screen power saving techniques

[edit]

On some laptops and smartphones, the screen power saving technique is used. Such technique is dynamatically change the backlight brightness and the LCD offset to decrease screen power. Examples of such technique included Intel Display Power Saving Technology (DPST).[13]

Power saving mode

[edit]

Mobile operating systems such as iOS, Android and Windows Phone may include a power saving mode to further increases battery life. Such a power saving mode may do decrease brightness, pause or terminate unused or background apps, etc.

See also

[edit]
  • iconEnergy portal
  • 80 Plus
  • Advanced power management (APM)
  • Advanced Configuration and Power Interface (ACPI)
    • Hibernate
    • Sleep
  • BatteryMAX (idle detection)
  • Constant Awake Mode
  • CPU power dissipation
  • Dynamic frequency scaling
  • Dynamic voltage scaling
  • Energy Star
  • Energy storage as a service (ESaaS)
  • Green computing
  • Low-power electronics
  • pmset
  • PowerTOP – diagnostic tool
  • Run-time estimation of system and sub-system level power consumption
  • Sleep Proxy Service
  • Standby power
  • The Green Grid
  • Thermal design power
  • VESA Display Power Management Signaling (DPMS)

References

[edit]
  1. ^ "AMD PowerNow! Technology with optimized power management". AMD. Retrieved 2009-04-23.
  2. ^ "IBM EnergyScale for POWER6 Processor-Based Systems". IBM. Retrieved 2009-04-23.
  3. ^ "AMD Cool'n'Quiet Technology Overview". AMD. Retrieved 2009-04-23.
  4. ^ "What is GPU computing". Nvidia.
  5. ^ "Dynamic voltage and frequency scaling framework for low-power embedded GPUs", Daecheol You et al., Electronics Letters (Volume:48, Issue: 21 ), 2012.
  6. ^ "Effects of Dynamic Voltage and Frequency Scaling on a K20 GPU", Rong Ge et al., 42nd International Conference on Parallel Processing Pages 826–833, 2013.
  7. ^ "GreenGPU: A Holistic Approach to Energy Efficiency in GPU-CPU Heterogeneous Architectures", Kai Ma et al., 41st International Conference on Parallel Processing Pages 48–57, 2012.
  8. ^ "Power and performance analysis of GPU-accelerated systems", Yuki Abe et al., USENIX conference on Power-Aware Computing and Systems Pages 10-10, 2012.
  9. ^ "Design challenges of technology scaling", Borkar, S., IEEE Micro (Volume:19, Issue: 4 ), 1999.
  10. ^ "Run-time power-gating in caches of GPUs for leakage energy savings", Yue Wang et al., Design, Automation & Test in Europe Conference & Exhibition (DATE), 2012
  11. ^ "A Predictive Shutdown Technique for GPU Shader Processors", Po-Han Wang et al., Computer Architecture Letters (Volume: 8, Issue: 1 ), 2009
  12. ^ "Power gating strategies on GPUs", Po-Han Wang et al., ACM Transactions on Architecture and Code Optimization (TACO) Volume 8 Issue 3, 2011
  13. ^ Bhowmik, Achintya K.; Brennan, Robert J. (May 29, 2007). "System-Level Display Power Reduction Technologies for Portable Computing and Communications Devices". pp. 1–5. doi:10.1109/PORTABLE.2007.19 – via IEEE Xplore.

External links

[edit]
  • Energy Star - Independent List of Products Archived 2008-11-02 at the Wayback Machine
  • Energy Star - Low Carbon IT Campaign
  • Energy Consumption Calculator
  • Research Bibliography on Power Management
  • v
  • t
  • e
Processor technologies
Models
  • Abstract machine
  • Stored-program computer
  • Finite-state machine
    • with datapath
    • Hierarchical
    • Deterministic finite automaton
    • Queue automaton
    • Cellular automaton
    • Quantum cellular automaton
  • Turing machine
    • Alternating Turing machine
    • Universal
    • Post–Turing
    • Quantum
    • Nondeterministic Turing machine
    • Probabilistic Turing machine
    • Hypercomputation
    • Zeno machine
  • Belt machine
  • Stack machine
  • Register machines
    • Counter
    • Pointer
    • Random-access
    • Random-access stored program
Architecture
  • Microarchitecture
  • Von Neumann
  • Harvard
    • modified
  • Dataflow
  • Transport-triggered
  • Cellular
  • Endianness
  • Memory access
    • NUMA
    • HUMA
    • Load–store
    • Register/memory
  • Cache hierarchy
  • Memory hierarchy
    • Virtual memory
    • Secondary storage
  • Heterogeneous
  • Fabric
  • Multiprocessing
  • Cognitive
  • Neuromorphic
Instruction set
architectures
Types
  • Orthogonal instruction set
  • CISC
  • RISC
  • Application-specific
  • EDGE
    • TRIPS
  • VLIW
    • EPIC
  • MISC
  • OISC
  • NISC
  • ZISC
  • VISC architecture
  • Quantum computing
  • Comparison
    • Addressing modes
Instruction
sets
  • Motorola 68000 series
  • VAX
  • PDP-11
  • x86
  • ARM
  • Stanford MIPS
  • MIPS
  • MIPS-X
  • Power
    • POWER
    • PowerPC
    • Power ISA
  • Clipper architecture
  • SPARC
  • SuperH
  • DEC Alpha
  • ETRAX CRIS
  • M32R
  • Unicore
  • Itanium
  • OpenRISC
  • RISC-V
  • MicroBlaze
  • LMC
  • System/3x0
    • S/360
    • S/370
    • S/390
    • z/Architecture
  • Tilera ISA
  • VISC architecture
  • Epiphany architecture
  • Others
Execution
Instruction pipelining
  • Pipeline stall
  • Operand forwarding
  • Classic RISC pipeline
Hazards
  • Data dependency
  • Structural
  • Control
  • False sharing
Out-of-order
  • Scoreboarding
  • Tomasulo's algorithm
    • Reservation station
    • Re-order buffer
  • Register renaming
  • Wide-issue
Speculative
  • Branch prediction
  • Memory dependence prediction
Parallelism
Level
  • Bit
    • Bit-serial
    • Word
  • Instruction
  • Pipelining
    • Scalar
    • Superscalar
  • Task
    • Thread
    • Process
  • Data
    • Vector
  • Memory
  • Distributed
Multithreading
  • Temporal
  • Simultaneous
    • Hyperthreading
    • Simultaneous and heterogenous
  • Speculative
  • Preemptive
  • Cooperative
Flynn's taxonomy
  • SISD
  • SIMD
    • Array processing (SIMT)
    • Pipelined processing
    • Associative processing
    • SWAR
  • MISD
  • MIMD
    • SPMD
Processor
performance
  • Transistor count
  • Instructions per cycle (IPC)
    • Cycles per instruction (CPI)
  • Instructions per second (IPS)
  • Floating-point operations per second (FLOPS)
  • Transactions per second (TPS)
  • Synaptic updates per second (SUPS)
  • Performance per watt (PPW)
  • Cache performance metrics
  • Computer performance by orders of magnitude
Types
  • Central processing unit (CPU)
  • Graphics processing unit (GPU)
    • GPGPU
  • Vector
  • Barrel
  • Stream
  • Tile processor
  • Coprocessor
  • PAL
  • ASIC
  • FPGA
  • FPOA
  • CPLD
  • Multi-chip module (MCM)
  • System in a package (SiP)
  • Package on a package (PoP)
By application
  • Embedded system
  • Microprocessor
  • Microcontroller
  • Mobile
  • Ultra-low-voltage
  • ASIP
  • Soft microprocessor
Systems
on chip
  • System on a chip (SoC)
  • Multiprocessor (MPSoC)
  • Cypress PSoC
  • Network on a chip (NoC)
Hardware
accelerators
  • Coprocessor
  • AI accelerator
  • Graphics processing unit (GPU)
  • Image processor
  • Vision processing unit (VPU)
  • Physics processing unit (PPU)
  • Digital signal processor (DSP)
  • Tensor Processing Unit (TPU)
  • Secure cryptoprocessor
  • Network processor
  • Baseband processor
Word size
  • 1-bit
  • 4-bit
  • 8-bit
  • 12-bit
  • 15-bit
  • 16-bit
  • 24-bit
  • 32-bit
  • 48-bit
  • 64-bit
  • 128-bit
  • 256-bit
  • 512-bit
  • bit slicing
  • others
    • variable
Core count
  • Single-core
  • Multi-core
  • Manycore
  • Heterogeneous architecture
Components
  • Core
  • Cache
    • CPU cache
    • Scratchpad memory
    • Data cache
    • Instruction cache
    • replacement policies
    • coherence
  • Bus
  • Clock rate
  • Clock signal
  • FIFO
Functional
units
  • Arithmetic logic unit (ALU)
  • Address generation unit (AGU)
  • Floating-point unit (FPU)
  • Memory management unit (MMU)
    • Load–store unit
    • Translation lookaside buffer (TLB)
  • Branch predictor
  • Branch target predictor
  • Integrated memory controller (IMC)
    • Memory management unit
  • Instruction decoder
Logic
  • Combinational
  • Sequential
  • Glue
  • Logic gate
    • Quantum
    • Array
Registers
  • Processor register
  • Status register
  • Stack register
  • Register file
  • Memory buffer
  • Memory address register
  • Program counter
Control unit
  • Hardwired control unit
  • Instruction unit
  • Data buffer
  • Write buffer
  • Microcode
  • ROM
  • Counter
Datapath
  • Multiplexer
  • Demultiplexer
  • Adder
  • Multiplier
    • CPU
  • Binary decoder
    • Address decoder
    • Sum-addressed decoder
  • Barrel shifter
Circuitry
  • Integrated circuit
    • 3D
    • Mixed-signal
    • Power management
  • Boolean
  • Digital
  • Analog
  • Quantum
  • Switch
Power
management
  • PMU
  • APM
  • ACPI
  • Dynamic frequency scaling
  • Dynamic voltage scaling
  • Clock gating
  • Performance per watt (PPW)
Related
  • History of general-purpose CPUs
  • Microprocessor chronology
  • Processor design
  • Digital electronics
  • Hardware security module
  • Semiconductor device fabrication
  • Tick–tock model
  • Pin grid array
  • Chip carrier
  • v
  • t
  • e
Computer processor power management technologies
Standards
  • Advanced Configuration and Power Interface (ACPI)
  • Advanced Power Management (APM)
Techniques
  • Dynamic frequency scaling
  • Dynamic voltage scaling
  • Clock gating
  • Overclocking
  • Underclocking
Implementations
Power Saving
  • AMD Cool'n'Quiet (desktop)
  • AMD PowerNow! (laptop)
  • Intel SpeedStep
  • Transmeta LongRun
  • VIA LongHaul
Performance
  • Intel Turbo Boost
  • AMD Turbo Core
Graphics
  • AMD Hybrid Graphics
  • AMD PowerPlay
  • AMD PowerTune
Authority control databases: National Edit this at Wikidata
  • United States
  • Israel
Retrieved from "https://teknopedia.ac.id/w/index.php?title=Power_management&oldid=1322328459"
Categories:
  • Computers and the environment
  • Energy conservation
  • Computer hardware tuning
Hidden categories:
  • Articles with short description
  • Short description is different from Wikidata
  • Articles lacking in-text citations from June 2008
  • All articles lacking in-text citations
  • Webarchive template wayback links

  • indonesia
  • Polski
  • العربية
  • Deutsch
  • English
  • Español
  • Français
  • Italiano
  • مصرى
  • Nederlands
  • 日本語
  • Português
  • Sinugboanong Binisaya
  • Svenska
  • Українська
  • Tiếng Việt
  • Winaray
  • 中文
  • Русский
Sunting pranala
url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url
Pusat Layanan

UNIVERSITAS TEKNOKRAT INDONESIA | ASEAN's Best Private University
Jl. ZA. Pagar Alam No.9 -11, Labuhan Ratu, Kec. Kedaton, Kota Bandar Lampung, Lampung 35132
Phone: (0721) 702022
Email: pmb@teknokrat.ac.id