Epstein Files Full PDF

CLICK HERE
Technopedia Center
PMB University Brochure
Faculty of Engineering and Computer Science
S1 Informatics S1 Information Systems S1 Information Technology S1 Computer Engineering S1 Electrical Engineering S1 Civil Engineering

faculty of Economics and Business
S1 Management S1 Accountancy

Faculty of Letters and Educational Sciences
S1 English literature S1 English language education S1 Mathematics education S1 Sports Education
teknopedia

  • Registerasi
  • Brosur UTI
  • Kip Scholarship Information
  • Performance
Flag Counter
  1. World Encyclopedia
  2. Multithreading (computer architecture) - Wikipedia
Multithreading (computer architecture) - Wikipedia
From Wikipedia, the free encyclopedia
For threads in software, see Thread (computing).
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
icon
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Multithreading" computer architecture – news · newspapers · books · scholar · JSTOR
(October 2009) (Learn how and when to remove this message)
This article may contain original research. Please improve it by verifying the claims made and adding inline citations. Statements consisting only of original research should be removed. (October 2010) (Learn how and when to remove this message)
(Learn how and when to remove this message)
Ability of a CPU to provide multiple threads of execution concurrently
A process with two threads of execution, running on a single processor. Thread #1 is executed first, eventually starts Thread #2, and waits for a response. When Thread #2 finishes, it signals Thread #1 to resume execution to completion and then finishes.
A process with two threads of execution, running on a single processor

In computer architecture, multithreading is the ability of a central processing unit (CPU) (or a single core in a multi-core processor) to provide multiple threads of execution.

Overview

[edit]

The multithreading paradigm has become more popular as efforts to further exploit instruction-level parallelism have stalled since the late 1990s. This allowed the concept of throughput computing to re-emerge from the more specialized field of transaction processing. Even though it is very difficult to further speed up a single thread or single program, most computer systems are actually multitasking among multiple threads or programs. Thus, techniques that improve the throughput of all tasks result in overall performance gains.

Two major techniques for throughput computing are multithreading and multiprocessing.

Advantages

[edit]

If a thread gets a lot of cache misses, the other threads can continue taking advantage of the unused computing resources, which may lead to faster overall execution, as these resources would have been idle if only a single thread were executed. Also, if a thread cannot use all the computing resources of the CPU (because instructions depend on each other's result), running another thread may prevent those resources from becoming idle.

Disadvantages

[edit]

Multiple threads can interfere with each other when sharing hardware resources such as caches or translation lookaside buffers (TLBs). As a result, execution times of a single thread are not improved and can be degraded, even when only one thread is executing, due to lower frequencies or additional pipeline stages that are necessary to accommodate thread-switching hardware.

Overall efficiency varies; Intel claims up to 30% improvement with its Hyper-Threading Technology,[1] while a synthetic program just performing a loop of non-optimized dependent floating-point operations actually gains a 100% speed improvement when run in parallel. On the other hand, hand-tuned assembly language programs using MMX or AltiVec extensions and performing data prefetches (as a good video encoder might) do not suffer from cache misses or idle computing resources. Such programs therefore do not benefit from hardware multithreading and can indeed see degraded performance due to contention for shared resources.

From the software standpoint, hardware support for multithreading is more visible to software, requiring more changes to both application programs and operating systems than multiprocessing. Hardware techniques used to support multithreading often parallel the software techniques used for computer multitasking. Thread scheduling is also a major problem in multithreading.

Merging data from two processes can often incur significantly higher costs compared to processing the same data on a single thread, potentially by two or more orders of magnitude due to overheads such as inter-process communication and synchronization.[2][3][4]

Types

[edit]
Main article: Temporal multithreading

The simplest type of multithreading occurs when one thread runs until it is blocked by an event that normally would create a long-latency stall. Such a stall might be a cache miss that has to access off-chip memory, which might take hundreds of CPU cycles for the data to return. Instead of waiting for the stall to resolve, a threaded processor would switch execution to another thread that was ready to run. Only when the data for the previous thread had arrived, would the previous thread be placed back on the list of ready-to-run threads.

For example:

  1. Cycle i: instruction j from thread A is issued.
  2. Cycle i + 1: instruction j + 1 from thread A is issued.
  3. Cycle i + 2: instruction j + 2 from thread A is issued, which is a load instruction that misses in all caches.
  4. Cycle i + 3: thread scheduler invoked, switches to thread B.
  5. Cycle i + 4: instruction k from thread B is issued.
  6. Cycle i + 5: instruction k + 1 from thread B is issued.

Conceptually, it is similar to cooperative multi-tasking used in real-time operating systems, in which tasks voluntarily give up execution time when they need to wait upon some type of event. This type of multithreading is known as block, cooperative or coarse-grained multithreading.

The goal of multithreading hardware support is to allow quick switching between a blocked thread and another thread ready to run. Switching from one thread to another means the hardware switches from using one register set to another. To achieve this goal, the hardware for the program visible registers, as well as some processor control registers (such as the program counter), is replicated. For example, to quickly switch between two threads, the processor is built with two sets of registers.

Additional hardware support for multithreading allows thread switching to be done in one CPU cycle, bringing performance improvements. Also, additional hardware allows each thread to behave as if it were executing alone and not sharing any hardware resources with other threads, minimizing the amount of software changes needed within the application and the operating system to support multithreading.

Many families of microcontrollers and embedded processors have multiple register banks to allow quick context switching for interrupts. Such schemes can be considered a type of block multithreading among the user program thread and the interrupt threads.[citation needed]

Fine-grained multithreading

[edit]
Main article: Barrel processor

The purpose of fine-grained multithreading is to remove all data dependency stalls from the execution pipeline. Since one thread is relatively independent from other threads, there is less chance of one instruction in one pipelining stage needing an output from an older instruction in the pipeline. Conceptually, it is similar to preemptive multitasking used in operating systems; an analogy would be that the time slice given to each active thread is one CPU cycle.

For example:

  1. Cycle i + 1: an instruction from thread B is issued.
  2. Cycle i + 2: an instruction from thread C is issued.

This type of multithreading was first called barrel processing, in which the staves of a barrel represent the pipeline stages and their executing threads. Interleaved, preemptive, fine-grained or time-sliced multithreading are more modern terminology.

In addition to the hardware costs discussed in the block type of multithreading, interleaved multithreading has an additional cost of each pipeline stage tracking the thread ID of the instruction it is processing. Also, since there are more threads being executed concurrently in the pipeline, shared resources such as caches and TLBs need to be larger to avoid thrashing between the different threads.

Simultaneous multithreading

[edit]
Main article: Simultaneous multithreading

The most advanced type of multithreading applies to superscalar processors. Whereas a normal superscalar processor issues multiple instructions from a single thread every CPU cycle, in simultaneous multithreading (SMT) a superscalar processor can issue instructions from multiple threads every CPU cycle. Recognizing that any single thread has a limited amount of instruction-level parallelism, this type of multithreading tries to exploit parallelism available across multiple threads to decrease the waste associated with unused issue slots.

For example:

  1. Cycle i: instructions j and j + 1 from thread A and instruction k from thread B are simultaneously issued.
  2. Cycle i + 1: instruction j + 2 from thread A, instruction k + 1 from thread B, and instruction m from thread C are all simultaneously issued.
  3. Cycle i + 2: instruction j + 3 from thread A and instructions m + 1 and m + 2 from thread C are all simultaneously issued.

To distinguish the other types of multithreading from SMT, the term "temporal multithreading" is used to denote when instructions from only one thread can be issued at a time.

In addition to the hardware costs discussed for interleaved multithreading, SMT has the additional cost of each pipeline stage tracking the thread ID of each instruction being processed. Again, shared resources such as caches and TLBs have to be sized for the large number of active threads being processed.

Implementations include DEC (later Compaq) EV8 (not completed), Intel Hyper-Threading Technology, IBM POWER5/POWER6/POWER7/POWER8/POWER9, IBM z13/z14/z15, Sun Microsystems UltraSPARC T2, Cray XMT, and AMD Bulldozer and Zen microarchitectures.

Implementation specifics

[edit]

A major area of research is the thread scheduler that must quickly choose from among the list of ready-to-run threads to execute next, as well as maintain the ready-to-run and stalled thread lists. An important subtopic is the different thread priority schemes that can be used by the scheduler. The thread scheduler might be implemented totally in software, totally in hardware, or as a hardware/software combination.

Another area of research is what type of events should cause a thread switch: cache misses, inter-thread communication, DMA completion, etc.

If the multithreading scheme replicates all of the software-visible state, including privileged control registers and TLBs, then it enables virtual machines to be created for each thread. This allows each thread to run its own operating system on the same processor. On the other hand, if only user-mode state is saved, then less hardware is required, which would allow more threads to be active at one time for the same die area or cost.

See also

[edit]
  • Async/await
  • Super-threading
  • Speculative multithreading

References

[edit]
  1. ^ "Intel Hyper-Threading Technology, Technical User's Guide" (PDF). p. 13. Archived from the original (PDF) on 2010-08-21.
  2. ^ Silberschatz, Abraham; Galvin, Peter B.; Gagne, Greg (29 July 2008). Operating System Concepts. Wiley. ISBN 978-0470128725.
  3. ^ Computer Organization and Design MIPS Edition: The Hardware/Software Interface (The Morgan Kaufmann Series in Computer Architecture and Design). Morgan Kaufmann. 2013. ISBN 978-0124077263.
  4. ^ Parallel Programming: Techniques and Applications Using Networked Workstations and Parallel Computers. Pearson. 2005. ISBN 978-0131405639.

External links

[edit]
  • A Survey of Processors with Explicit Multithreading, ACM, March 2003, by Theo Ungerer, Borut Robi and Jurij Silc
  • Operating System | Difference between Multitasking, Multithreading and Multiprocessing GeeksforGeeks, 6 Sept. 2018.
  • v
  • t
  • e
Computer science
Note: This template roughly follows the 2012 ACM Computing Classification System.
Hardware
  • Printed circuit board
  • Peripheral
  • Integrated circuit
  • Very-large-scale integration
  • System on a chip (SoC)
  • Energy consumption (green computing)
  • Electronic design automation
  • Hardware acceleration
  • Processor
  • Size / Form
Computer systems organization
  • Computer architecture
  • Computational complexity
  • Dependability
  • Embedded system
  • Real-time computing
  • Cyber-physical system
  • Fault tolerance
  • Wireless sensor network
Networks
  • Network architecture
  • Network protocol
  • Network components
  • Network scheduler
  • Network performance evaluation
  • Network service
Software organization
  • Interpreter
  • Middleware
  • Virtual machine
  • Operating system
  • Software quality
Software notations and tools
  • Programming paradigm
  • Programming language
  • Compiler
  • Domain-specific language
  • Modeling language
  • Software framework
  • Integrated development environment
  • Software configuration management
  • Software library
  • Software repository
Software development
  • Control flow
  • Software development process
  • Requirements analysis
  • Software design
  • Software construction
  • Software deployment
  • Software engineering
  • Software maintenance
  • Programming team
  • Open-source model
Theory of computation
  • Model of computation
    • Stochastic
  • Formal language
  • Automata theory
  • Computability theory
  • Computational complexity theory
  • Logic
  • Semantics
Algorithms
  • Algorithm design
  • Analysis of algorithms
  • Algorithmic efficiency
  • Randomized algorithm
  • Computational geometry
Mathematics of computing
  • Discrete mathematics
  • Probability
  • Statistics
  • Mathematical software
  • Information theory
  • Mathematical analysis
  • Numerical analysis
  • Theoretical computer science
    • Computational problem
Information systems
  • Database management system
  • Information storage systems
  • Enterprise information system
  • Social information systems
  • Geographic information system
  • Decision support system
  • Process control system
  • Multimedia information system
  • Data mining
  • Digital library
  • Computing platform
  • Digital marketing
  • World Wide Web
  • Information retrieval
Security
  • Cryptography
  • Formal methods
  • Security hacker
  • Security services
  • Intrusion detection system
  • Hardware security
  • Network security
  • Information security
  • Application security
Human-centered computing
  • Interaction design
  • Augmented reality
  • Virtual reality
  • Social computing
  • Ubiquitous computing
  • Visualization
  • Accessibility
  • Human–computer interaction
  • Mobile computing
Concurrency
  • Concurrent computing
  • Parallel computing
  • Distributed computing
  • Multithreading
  • Multiprocessing
Artificial intelligence
  • Natural language processing
  • Knowledge representation and reasoning
  • Computer vision
  • Automated planning and scheduling
  • Search methodology
  • Control method
  • Philosophy of artificial intelligence
  • Distributed artificial intelligence
Machine learning
  • Supervised learning
  • Unsupervised learning
  • Reinforcement learning
  • Multi-task learning
  • Cross-validation
Graphics
  • Animation
  • Rendering
  • Photograph manipulation
  • Graphics processing unit
  • Image compression
  • Solid modeling
Applied computing
  • Quantum computing
  • E-commerce
  • Enterprise software
  • Computational mathematics
  • Computational physics
  • Computational chemistry
  • Computational biology
  • Computational social science
  • Computational engineering
  • Differentiable computing
  • Computational healthcare
  • Digital art
  • Electronic publishing
  • Cyberwarfare
  • Electronic voting
  • Video games
  • Word processing
  • Operations research
  • Educational technology
  • Document management
Specialized Platform Development
  • Thermodynamic computing
  • Category
  • Outline
  • Glossaries
  • v
  • t
  • e
Processor technologies
Models
  • Abstract machine
  • Stored-program computer
  • Finite-state machine
    • with datapath
    • Hierarchical
    • Deterministic finite automaton
    • Queue automaton
    • Cellular automaton
    • Quantum cellular automaton
  • Turing machine
    • Alternating Turing machine
    • Universal
    • Post–Turing
    • Quantum
    • Nondeterministic Turing machine
    • Probabilistic Turing machine
    • Hypercomputation
    • Zeno machine
  • Belt machine
  • Stack machine
  • Register machines
    • Counter
    • Pointer
    • Random-access
    • Random-access stored program
Architecture
  • Microarchitecture
  • Von Neumann
  • Harvard
    • modified
  • Dataflow
  • Transport-triggered
  • Cellular
  • Endianness
  • Memory access
    • NUMA
    • HUMA
    • Load–store
    • Register/memory
  • Cache hierarchy
  • Memory hierarchy
    • Virtual memory
    • Secondary storage
  • Heterogeneous
  • Fabric
  • Multiprocessing
  • Cognitive
  • Neuromorphic
Instruction set
architectures
Types
  • Orthogonal instruction set
  • CISC
  • RISC
  • Application-specific
  • EDGE
    • TRIPS
  • VLIW
    • EPIC
  • MISC
  • OISC
  • NISC
  • ZISC
  • VISC architecture
  • Quantum computing
  • Comparison
    • Addressing modes
Instruction
sets
  • Motorola 68000 series
  • VAX
  • PDP-11
  • x86
  • ARM
  • Stanford MIPS
  • MIPS
  • MIPS-X
  • Power
    • POWER
    • PowerPC
    • Power ISA
  • Clipper architecture
  • SPARC
  • SuperH
  • DEC Alpha
  • ETRAX CRIS
  • M32R
  • Unicore
  • Itanium
  • OpenRISC
  • RISC-V
  • MicroBlaze
  • LMC
  • System/3x0
    • S/360
    • S/370
    • S/390
    • z/Architecture
  • Tilera ISA
  • VISC architecture
  • Epiphany architecture
  • Others
Execution
Instruction pipelining
  • Pipeline stall
  • Operand forwarding
  • Classic RISC pipeline
Hazards
  • Data dependency
  • Structural
  • Control
  • False sharing
Out-of-order
  • Scoreboarding
  • Tomasulo's algorithm
    • Reservation station
    • Re-order buffer
  • Register renaming
  • Wide-issue
Speculative
  • Branch prediction
  • Memory dependence prediction
Parallelism
Level
  • Bit
    • Bit-serial
    • Word
  • Instruction
  • Pipelining
    • Scalar
    • Superscalar
  • Task
    • Thread
    • Process
  • Data
    • Vector
  • Memory
  • Distributed
Multithreading
  • Temporal
  • Simultaneous
    • Hyperthreading
    • Simultaneous and heterogenous
  • Speculative
  • Preemptive
  • Cooperative
Flynn's taxonomy
  • SISD
  • SIMD
    • Array processing (SIMT)
    • Pipelined processing
    • Associative processing
    • SWAR
  • MISD
  • MIMD
    • SPMD
Processor
performance
  • Transistor count
  • Instructions per cycle (IPC)
    • Cycles per instruction (CPI)
  • Instructions per second (IPS)
  • Floating-point operations per second (FLOPS)
  • Transactions per second (TPS)
  • Synaptic updates per second (SUPS)
  • Performance per watt (PPW)
  • Cache performance metrics
  • Computer performance by orders of magnitude
Types
  • Central processing unit (CPU)
  • Graphics processing unit (GPU)
    • GPGPU
  • Vector
  • Barrel
  • Stream
  • Tile processor
  • Coprocessor
  • PAL
  • ASIC
  • FPGA
  • FPOA
  • CPLD
  • Multi-chip module (MCM)
  • System in a package (SiP)
  • Package on a package (PoP)
By application
  • Embedded system
  • Microprocessor
  • Microcontroller
  • Mobile
  • Ultra-low-voltage
  • ASIP
  • Soft microprocessor
Systems
on chip
  • System on a chip (SoC)
  • Multiprocessor (MPSoC)
  • Cypress PSoC
  • Network on a chip (NoC)
Hardware
accelerators
  • Coprocessor
  • AI accelerator
  • Graphics processing unit (GPU)
  • Image processor
  • Vision processing unit (VPU)
  • Physics processing unit (PPU)
  • Digital signal processor (DSP)
  • Tensor Processing Unit (TPU)
  • Secure cryptoprocessor
  • Network processor
  • Baseband processor
Word size
  • 1-bit
  • 4-bit
  • 8-bit
  • 12-bit
  • 15-bit
  • 16-bit
  • 24-bit
  • 32-bit
  • 48-bit
  • 64-bit
  • 128-bit
  • 256-bit
  • 512-bit
  • bit slicing
  • others
    • variable
Core count
  • Single-core
  • Multi-core
  • Manycore
  • Heterogeneous architecture
Components
  • Core
  • Cache
    • CPU cache
    • Scratchpad memory
    • Data cache
    • Instruction cache
    • replacement policies
    • coherence
  • Bus
  • Clock rate
  • Clock signal
  • FIFO
Functional
units
  • Arithmetic logic unit (ALU)
  • Address generation unit (AGU)
  • Floating-point unit (FPU)
  • Memory management unit (MMU)
    • Load–store unit
    • Translation lookaside buffer (TLB)
  • Branch predictor
  • Branch target predictor
  • Integrated memory controller (IMC)
    • Memory management unit
  • Instruction decoder
Logic
  • Combinational
  • Sequential
  • Glue
  • Logic gate
    • Quantum
    • Array
Registers
  • Processor register
  • Status register
  • Stack register
  • Register file
  • Memory buffer
  • Memory address register
  • Program counter
Control unit
  • Hardwired control unit
  • Instruction unit
  • Data buffer
  • Write buffer
  • Microcode
  • ROM
  • Counter
Datapath
  • Multiplexer
  • Demultiplexer
  • Adder
  • Multiplier
    • CPU
  • Binary decoder
    • Address decoder
    • Sum-addressed decoder
  • Barrel shifter
Circuitry
  • Integrated circuit
    • 3D
    • Mixed-signal
    • Power management
  • Boolean
  • Digital
  • Analog
  • Quantum
  • Switch
Power
management
  • PMU
  • APM
  • ACPI
  • Dynamic frequency scaling
  • Dynamic voltage scaling
  • Clock gating
  • Performance per watt (PPW)
Related
  • History of general-purpose CPUs
  • Microprocessor chronology
  • Processor design
  • Digital electronics
  • Hardware security module
  • Semiconductor device fabrication
  • Tick–tock model
  • Pin grid array
  • Chip carrier
  • v
  • t
  • e
Parallel computing
General
  • Distributed computing
  • Parallel computing
  • Parallel algorithm
  • Massively parallel
  • Cloud computing
  • High-performance computing
  • Multiprocessing
  • Manycore processor
  • GPGPU
  • Computer network
  • Systolic array
Levels
  • Bit
  • Instruction
  • Thread
  • Task
  • Data
  • Memory
  • Loop
  • Pipeline
Multithreading
  • Temporal
  • Simultaneous (SMT)
  • Simultaneous and heterogenous
  • Speculative (SpMT)
  • Preemptive
  • Cooperative
  • Clustered multi-thread (CMT)
  • Hardware scout
Theory
  • PRAM model
  • PEM model
  • Analysis of parallel algorithms
  • Amdahl's law
  • Gustafson's law
  • Cost efficiency
  • Karp–Flatt metric
  • Slowdown
  • Speedup
Elements
  • Process
  • Thread
  • Fiber
  • Instruction window
  • Array
Coordination
  • Multiprocessing
  • Memory coherence
  • Cache coherence
  • Cache invalidation
  • Barrier
  • Synchronization
  • Application checkpointing
Programming
  • Stream processing
  • Dataflow programming
  • Models
    • Implicit parallelism
    • Explicit parallelism
    • Concurrency
  • Non-blocking algorithm
Hardware
  • Flynn's taxonomy
    • SISD
    • SIMD
      • Array processing (SIMT)
      • Pipelined processing
      • Associative processing
    • MISD
    • MIMD
  • Dataflow architecture
  • Pipelined processor
  • Superscalar processor
  • Vector processor
  • Multiprocessor
    • symmetric
    • asymmetric
  • Memory
    • shared
    • distributed
    • distributed shared
    • UMA
    • NUMA
    • COMA
  • Massively parallel computer
  • Computer cluster
    • Beowulf cluster
  • Grid computer
  • Hardware acceleration
APIs
  • Ateji PX
  • Boost
  • Chapel
  • HPX
  • Charm++
  • Cilk
  • Coarray Fortran
  • CUDA
  • Dryad
  • C++ AMP
  • Global Arrays
  • GPUOpen
  • MPI
  • OpenMP
  • OpenCL
  • OpenHMPP
  • OpenACC
  • Parallel Extensions
  • PVM
  • pthreads
  • RaftLib
  • ROCm
  • UPC
  • TBB
  • ZPL
Problems
  • Automatic parallelization
  • Cache stampede
  • Deadlock
  • Deterministic algorithm
  • Embarrassingly parallel
  • Parallel slowdown
  • Race condition
  • Software lockout
  • Scalability
  • Starvation
  •  Category: Parallel computing
Retrieved from "https://teknopedia.ac.id/w/index.php?title=Multithreading_(computer_architecture)&oldid=1325445750"
Categories:
  • Central processing unit
  • Instruction processing
  • Microprocessors
  • Parallel computing
  • Threads (computing)
Hidden categories:
  • Articles needing additional references from October 2009
  • All articles needing additional references
  • Articles that may contain original research from October 2010
  • All articles that may contain original research
  • Articles with multiple maintenance issues
  • Articles with short description
  • Short description is different from Wikidata
  • All articles with unsourced statements
  • Articles with unsourced statements from October 2010

  • indonesia
  • Polski
  • العربية
  • Deutsch
  • English
  • Español
  • Français
  • Italiano
  • مصرى
  • Nederlands
  • 日本語
  • Português
  • Sinugboanong Binisaya
  • Svenska
  • Українська
  • Tiếng Việt
  • Winaray
  • 中文
  • Русский
Sunting pranala
url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url
Pusat Layanan

UNIVERSITAS TEKNOKRAT INDONESIA | ASEAN's Best Private University
Jl. ZA. Pagar Alam No.9 -11, Labuhan Ratu, Kec. Kedaton, Kota Bandar Lampung, Lampung 35132
Phone: (0721) 702022
Email: pmb@teknokrat.ac.id