Epstein Files Full PDF

CLICK HERE
Technopedia Center
PMB University Brochure
Faculty of Engineering and Computer Science
S1 Informatics S1 Information Systems S1 Information Technology S1 Computer Engineering S1 Electrical Engineering S1 Civil Engineering

faculty of Economics and Business
S1 Management S1 Accountancy

Faculty of Letters and Educational Sciences
S1 English literature S1 English language education S1 Mathematics education S1 Sports Education
teknopedia

  • Registerasi
  • Brosur UTI
  • Kip Scholarship Information
  • Performance
Flag Counter
  1. World Encyclopedia
  2. Negation - Wikipedia
Negation - Wikipedia
From Wikipedia, the free encyclopedia
Logical operation
For negation in linguistics, see Affirmation and negation. For other uses, see Negation (disambiguation).

Negation
NOT
Venn diagram of Negation
Definition ¬ x {\displaystyle \lnot {x}} {\displaystyle \lnot {x}}
Truth table ( 01 ) {\displaystyle (01)} {\displaystyle (01)}
Logic gate
Normal forms
Disjunctive ¬ x {\displaystyle \lnot {x}} {\displaystyle \lnot {x}}
Conjunctive ¬ x {\displaystyle \lnot {x}} {\displaystyle \lnot {x}}
Zhegalkin polynomial 1 ⊕ x {\displaystyle 1\oplus x} {\displaystyle 1\oplus x}
Post's lattices
0-preservingno
1-preservingno
Monotoneno
Affineyes
Self-dualyes
  • v
  • t
  • e
Logical connectives
NOT ¬ A , − A , A ¯ , ∼ A {\displaystyle \neg A,-A,{\overline {A}},{\sim }A} {\displaystyle \neg A,-A,{\overline {A}},{\sim }A}
AND A ∧ B , A ⋅ B , A B , A & ⁡ B , A & & ⁡ B {\displaystyle A\land B,A\cdot B,AB,A\mathop {\&} B,A\mathop {\&\&} B} {\displaystyle A\land B,A\cdot B,AB,A\mathop {\&} B,A\mathop {\&\&} B}
NAND A ∧ ¯ B , A ↑ B , A ∣ B , A ⋅ B ¯ {\displaystyle A\mathrel {\overline {\land }} B,A\uparrow B,A\mid B,{\overline {A\cdot B}}} {\displaystyle A\mathrel {\overline {\land }} B,A\uparrow B,A\mid B,{\overline {A\cdot B}}}
OR A ∨ B , A + B , A ∣ B , A ∥ B {\displaystyle A\lor B,A+B,A\mid B,A\parallel B} {\displaystyle A\lor B,A+B,A\mid B,A\parallel B}
NOR A ∨ ¯ B , A ↓ B , A + B ¯ {\displaystyle A\mathrel {\overline {\lor }} B,A\downarrow B,{\overline {A+B}}} {\displaystyle A\mathrel {\overline {\lor }} B,A\downarrow B,{\overline {A+B}}}
XNOR A ⊙ B , A ∨ ¯ B ¯ {\displaystyle A\odot B,{\overline {A\mathrel {\overline {\lor }} B}}} {\displaystyle A\odot B,{\overline {A\mathrel {\overline {\lor }} B}}}
└ equivalent A ≡ B , A ⇔ B , A ⇋ B {\displaystyle A\equiv B,A\Leftrightarrow B,A\leftrightharpoons B} {\displaystyle A\equiv B,A\Leftrightarrow B,A\leftrightharpoons B}
XOR A ∨ _ B , A ⊕ B {\displaystyle A\mathrel {\underline {\lor }} B,A\oplus B} {\displaystyle A\mathrel {\underline {\lor }} B,A\oplus B}
└ nonequivalent A ≢ B , A ⇎ B , A ↮ B {\displaystyle A\not \equiv B,A\not \Leftrightarrow B,A\nleftrightarrow B} {\displaystyle A\not \equiv B,A\not \Leftrightarrow B,A\nleftrightarrow B}
implies A ⇒ B , A ⊃ B , A → B {\displaystyle A\Rightarrow B,A\supset B,A\rightarrow B} {\displaystyle A\Rightarrow B,A\supset B,A\rightarrow B}
nonimplication (NIMPLY) A ⇏ B , A ⊅ B , A ↛ B {\displaystyle A\not \Rightarrow B,A\not \supset B,A\nrightarrow B} {\displaystyle A\not \Rightarrow B,A\not \supset B,A\nrightarrow B}
converse A ⇐ B , A ⊂ B , A ← B {\displaystyle A\Leftarrow B,A\subset B,A\leftarrow B} {\displaystyle A\Leftarrow B,A\subset B,A\leftarrow B}
converse nonimplication A ⇍ B , A ⊄ B , A ↚ B {\displaystyle A\not \Leftarrow B,A\not \subset B,A\nleftarrow B} {\displaystyle A\not \Leftarrow B,A\not \subset B,A\nleftarrow B}
Related concepts
  • Propositional calculus
  • Predicate logic
  • Boolean algebra
  • Truth table
  • Truth function
  • Boolean function
  • Functional completeness
  • Scope (logic)
Applications
  • Digital logic
  • Programming languages
  • Mathematical logic
  • Philosophy of logic
Category
  • v
  • t
  • e

In logic, negation, also called the logical not or logical complement, is an operation that takes a proposition P {\displaystyle P} {\displaystyle P} to another proposition "not P {\displaystyle P} {\displaystyle P}", written ¬ P {\displaystyle \neg P} {\displaystyle \neg P}, ∼ P {\displaystyle {\mathord {\sim }}P} {\displaystyle {\mathord {\sim }}P}, P ′ {\displaystyle P^{\prime }} {\displaystyle P^{\prime }}[1] or P ¯ {\displaystyle {\overline {P}}} {\displaystyle {\overline {P}}}[2]. It is interpreted intuitively as being true when P {\displaystyle P} {\displaystyle P} is false, and false when P {\displaystyle P} {\displaystyle P} is true.[3][4] For example, if P {\displaystyle P} {\displaystyle P} is "The dog runs", then "not P {\displaystyle P} {\displaystyle P}" is "The dog does not run". An operand of a negation is called a negand or negatum.[5]

Negation is a unary logical connective. It may furthermore be applied not only to propositions, but also to notions, truth values, or semantic values more generally. In classical logic, negation is normally identified with the truth function that takes truth to falsity (and vice versa). In intuitionistic logic, according to the Brouwer–Heyting–Kolmogorov interpretation, the negation of a proposition P {\displaystyle P} {\displaystyle P} is the proposition whose proofs are the refutations of P {\displaystyle P} {\displaystyle P}.

Definition

[edit]

Classical negation is an operation on one logical value, typically the value of a proposition, that produces a value of true when its operand is false, and a value of false when its operand is true. Thus if statement P {\displaystyle P} {\displaystyle P} is true, then ¬ P {\displaystyle \neg P} {\displaystyle \neg P} (pronounced "not P") would then be false; and conversely, if ¬ P {\displaystyle \neg P} {\displaystyle \neg P} is true, then P {\displaystyle P} {\displaystyle P} would be false.

The truth table of ¬ P {\displaystyle \neg P} {\displaystyle \neg P} is as follows:

P {\displaystyle P} {\displaystyle P} ¬ P {\displaystyle \neg P} {\displaystyle \neg P}
True False
False True

Negation can be defined in terms of other logical operations. For example, ¬ P {\displaystyle \neg P} {\displaystyle \neg P} can be defined as P → ⊥ {\displaystyle P\rightarrow \bot } {\displaystyle P\rightarrow \bot } (where → {\displaystyle \rightarrow } {\displaystyle \rightarrow } is logical consequence and ⊥ {\displaystyle \bot } {\displaystyle \bot } is absolute falsehood). Conversely, one can define ⊥ {\displaystyle \bot } {\displaystyle \bot } as Q ∧ ¬ Q {\displaystyle Q\land \neg Q} {\displaystyle Q\land \neg Q} for any proposition Q (where ∧ {\displaystyle \land } {\displaystyle \land } is logical conjunction). The idea here is that any contradiction is false, and while these ideas work in both classical and intuitionistic logic, they do not work in paraconsistent logic, where contradictions are not necessarily false. As a further example, negation can be defined in terms of NAND and can also be defined in terms of NOR.

Algebraically, classical negation corresponds to complementation in a Boolean algebra, and intuitionistic negation to pseudocomplementation in a Heyting algebra. These algebras provide a semantics for classical and intuitionistic logic.

Notation

[edit]

The negation of a proposition p is notated in different ways, in various contexts of discussion and fields of application. The following table documents some of these variants:

Notation Plain text Vocalization
¬ p {\displaystyle \neg p} {\displaystyle \neg p} ¬p , 7p[6] Not p
∼ p {\displaystyle {\mathord {\sim }}p} {\displaystyle {\mathord {\sim }}p} ~p Not p
− p {\displaystyle -p} {\displaystyle -p} -p Not p
N p {\displaystyle Np} {\displaystyle Np} En p
p ′ {\displaystyle p'} {\displaystyle p'} p'
  • p prime,
  • p complement
p ¯ {\displaystyle {\overline {p}}} {\displaystyle {\overline {p}}} ̅p
  • p bar,
  • Bar p
! p {\displaystyle !p} {\displaystyle !p} !p
  • Bang p
  • Not p

The notation N p {\displaystyle Np} {\displaystyle Np} is Polish notation.

In set theory, ∖ {\displaystyle \setminus } {\displaystyle \setminus } is also used to indicate 'not in the set of': U ∖ A {\displaystyle U\setminus A} {\displaystyle U\setminus A} is the set of all members of U that are not members of A.

Regardless how it is notated or symbolized, the negation ¬ P {\displaystyle \neg P} {\displaystyle \neg P} can be read as "it is not the case that P", "not that P", or usually more simply as "not P".

Precedence

[edit]
See also: Logical connective § Order of precedence

As a way of reducing the number of necessary parentheses, one may introduce precedence rules: ¬ has higher precedence than ∧, ∧ higher than ∨, and ∨ higher than →. So for example, P ∨ Q ∧ ¬ R → S {\displaystyle P\vee Q\wedge {\neg R}\rightarrow S} {\displaystyle P\vee Q\wedge {\neg R}\rightarrow S} is short for ( P ∨ ( Q ∧ ( ¬ R ) ) ) → S . {\displaystyle (P\vee (Q\wedge (\neg R)))\rightarrow S.} {\displaystyle (P\vee (Q\wedge (\neg R)))\rightarrow S.}

Here is a table that shows a commonly used precedence of logical operators.[7]

Operator Precedence
¬ {\displaystyle \neg } {\displaystyle \neg } 1
∧ {\displaystyle \land } {\displaystyle \land } 2
∨ {\displaystyle \lor } {\displaystyle \lor } 3
→ {\displaystyle \to } {\displaystyle \to } 4
↔ {\displaystyle \leftrightarrow } {\displaystyle \leftrightarrow } 5

Properties

[edit]

Double negation

[edit]

Within a system of classical logic, double negation, that is, the negation of the negation of a proposition P {\displaystyle P} {\displaystyle P}, is logically equivalent to P {\displaystyle P} {\displaystyle P}. Expressed in symbolic terms, ¬ ¬ P ≡ P {\displaystyle \neg \neg P\equiv P} {\displaystyle \neg \neg P\equiv P}. In intuitionistic logic, a proposition implies its double negation, but not conversely. This marks one important difference between classical and intuitionistic negation. Algebraically, classical negation is called an involution of period two.

However, in intuitionistic logic, the weaker equivalence ¬ ¬ ¬ P ≡ ¬ P {\displaystyle \neg \neg \neg P\equiv \neg P} {\displaystyle \neg \neg \neg P\equiv \neg P} does hold. This is because in intuitionistic logic, ¬ P {\displaystyle \neg P} {\displaystyle \neg P} is just a shorthand for P → ⊥ {\displaystyle P\rightarrow \bot } {\displaystyle P\rightarrow \bot }, and we also have P → ¬ ¬ P {\displaystyle P\rightarrow \neg \neg P} {\displaystyle P\rightarrow \neg \neg P}. Composing that last implication with triple negation ¬ ¬ P → ⊥ {\displaystyle \neg \neg P\rightarrow \bot } {\displaystyle \neg \neg P\rightarrow \bot } implies that P → ⊥ {\displaystyle P\rightarrow \bot } {\displaystyle P\rightarrow \bot } .

As a result, in the propositional case, a sentence is classically provable if its double negation is intuitionistically provable. This result is known as Glivenko's theorem.

Distributivity

[edit]

De Morgan's laws provide a way of distributing negation over disjunction and conjunction:

¬ ( P ∨ Q ) ≡ ( ¬ P ∧ ¬ Q ) {\displaystyle \neg (P\lor Q)\equiv (\neg P\land \neg Q)} {\displaystyle \neg (P\lor Q)\equiv (\neg P\land \neg Q)},  and
¬ ( P ∧ Q ) ≡ ( ¬ P ∨ ¬ Q ) {\displaystyle \neg (P\land Q)\equiv (\neg P\lor \neg Q)} {\displaystyle \neg (P\land Q)\equiv (\neg P\lor \neg Q)}.

Linearity

[edit]

Let ⊕ {\displaystyle \oplus } {\displaystyle \oplus } denote the logical xor operation. In Boolean algebra, a linear function is one such that:

If there exists a 0 , a 1 , … , a n ∈ { 0 , 1 } {\displaystyle a_{0},a_{1},\dots ,a_{n}\in \{0,1\}} {\displaystyle a_{0},a_{1},\dots ,a_{n}\in \{0,1\}}, f ( b 1 , b 2 , … , b n ) = a 0 ⊕ ( a 1 ∧ b 1 ) ⊕ ⋯ ⊕ ( a n ∧ b n ) {\displaystyle f(b_{1},b_{2},\dots ,b_{n})=a_{0}\oplus (a_{1}\land b_{1})\oplus \dots \oplus (a_{n}\land b_{n})} {\displaystyle f(b_{1},b_{2},\dots ,b_{n})=a_{0}\oplus (a_{1}\land b_{1})\oplus \dots \oplus (a_{n}\land b_{n})}, for all b 1 , b 2 , … , b n ∈ { 0 , 1 } {\displaystyle b_{1},b_{2},\dots ,b_{n}\in \{0,1\}} {\displaystyle b_{1},b_{2},\dots ,b_{n}\in \{0,1\}}.

Another way to express this is that each variable always makes a difference in the truth-value of the operation, or it never makes a difference. Negation is a linear logical operator.

Self dual

[edit]

In Boolean algebra, a self dual function is a function such that:

f ( a 1 , … , a n ) = ¬ f ( ¬ a 1 , … , ¬ a n ) {\displaystyle f(a_{1},\dots ,a_{n})=\neg f(\neg a_{1},\dots ,\neg a_{n})} {\displaystyle f(a_{1},\dots ,a_{n})=\neg f(\neg a_{1},\dots ,\neg a_{n})} for all a 1 , … , a n ∈ { 0 , 1 } {\displaystyle a_{1},\dots ,a_{n}\in \{0,1\}} {\displaystyle a_{1},\dots ,a_{n}\in \{0,1\}}. Negation is a self dual logical operator.

Negations of quantifiers

[edit]

In first-order logic, there are two quantifiers, one is the universal quantifier ∀ {\displaystyle \forall } {\displaystyle \forall } (means "for all") and the other is the existential quantifier ∃ {\displaystyle \exists } {\displaystyle \exists } (means "there exists"). The negation of one quantifier is the other quantifier ( ¬ ∀ x P ( x ) ≡ ∃ x ¬ P ( x ) {\displaystyle \neg \forall xP(x)\equiv \exists x\neg P(x)} {\displaystyle \neg \forall xP(x)\equiv \exists x\neg P(x)} and ¬ ∃ x P ( x ) ≡ ∀ x ¬ P ( x ) {\displaystyle \neg \exists xP(x)\equiv \forall x\neg P(x)} {\displaystyle \neg \exists xP(x)\equiv \forall x\neg P(x)}). For example, with the predicate P as "x is mortal" and the domain of x as the collection of all humans, ∀ x P ( x ) {\displaystyle \forall xP(x)} {\displaystyle \forall xP(x)} means "a person x in all humans is mortal" or "all humans are mortal". The negation of it is ¬ ∀ x P ( x ) ≡ ∃ x ¬ P ( x ) {\displaystyle \neg \forall xP(x)\equiv \exists x\neg P(x)} {\displaystyle \neg \forall xP(x)\equiv \exists x\neg P(x)}, meaning "there exists a person x in all humans who is not mortal", or "there exists someone who lives forever".

Rules of inference

[edit]
See also: Double negation

There are a number of equivalent ways to formulate rules for negation. One usual way to formulate classical negation in a natural deduction setting is to take as primitive rules of inference negation introduction (from a derivation of P {\displaystyle P} {\displaystyle P} to both Q {\displaystyle Q} {\displaystyle Q} and ¬ Q {\displaystyle \neg Q} {\displaystyle \neg Q}, infer ¬ P {\displaystyle \neg P} {\displaystyle \neg P}; this rule also being called reductio ad absurdum), negation elimination (from P {\displaystyle P} {\displaystyle P} and ¬ P {\displaystyle \neg P} {\displaystyle \neg P} infer Q {\displaystyle Q} {\displaystyle Q}; this rule also being called ex falso quodlibet), and double negation elimination (from ¬ ¬ P {\displaystyle \neg \neg P} {\displaystyle \neg \neg P} infer P {\displaystyle P} {\displaystyle P}). One obtains the rules for intuitionistic negation the same way but by excluding double negation elimination.

Negation introduction states that if an absurdity can be drawn as conclusion from P {\displaystyle P} {\displaystyle P} then P {\displaystyle P} {\displaystyle P} must not be the case (i.e. P {\displaystyle P} {\displaystyle P} is false (classically) or refutable (intuitionistically) or etc.). Negation elimination states that anything follows from an absurdity. Sometimes negation elimination is formulated using a primitive absurdity sign ⊥ {\displaystyle \bot } {\displaystyle \bot }. In this case the rule says that from P {\displaystyle P} {\displaystyle P} and ¬ P {\displaystyle \neg P} {\displaystyle \neg P} follows an absurdity. Together with double negation elimination one may infer our originally formulated rule, namely that anything follows from an absurdity.

Typically the intuitionistic negation ¬ P {\displaystyle \neg P} {\displaystyle \neg P} of P {\displaystyle P} {\displaystyle P} is defined as P → ⊥ {\displaystyle P\rightarrow \bot } {\displaystyle P\rightarrow \bot }. Then negation introduction and elimination are just special cases of implication introduction (conditional proof) and elimination (modus ponens). In this case one must also add as a primitive rule ex falso quodlibet.

Programming language and ordinary language

[edit]

As in mathematics, negation is used in computer science to construct logical statements.

if (!(r == t))
{
    /*...statements executed when r does NOT equal t...*/
}

The exclamation mark "!" signifies logical NOT in B, C, and languages with a C-inspired syntax such as C++, Java, JavaScript, Perl, and PHP. "NOT" is the operator used in ALGOL 60, BASIC, and languages with an ALGOL- or BASIC-inspired syntax such as Pascal, Ada, and Eiffel. Some languages (C++, Perl, etc.) provide more than one operator for negation. A few languages like PL/I and Ratfor use ¬ for negation. Most modern languages allow the above statement to be shortened from if (!(r == t)) to if (r != t), which allows sometimes, when the compiler/interpreter is not able to optimize it, faster programs.

In computer science there is also bitwise negation. This takes the value given and switches all the binary 1s to 0s and 0s to 1s. This is often used to create ones' complement (or "~" in C or C++) and two's complement (just simplified to "-" or the negative sign, as this is equivalent to taking the arithmetic negation of the number).

To get the absolute (positive equivalent) value of a given integer the following would work as the "-" changes it from negative to positive (it is negative because "x < 0" yields true)

unsigned int abs(int x)
{
    if (x < 0)
        return -x;
    else
        return x;
}

To demonstrate logical negation:

unsigned int abs(int x)
{
    if (!(x < 0))
        return x;
    else
        return -x;
}

Inverting the condition and reversing the outcomes produces code that is logically equivalent to the original code, i.e. will have identical results for any input (depending on the compiler used, the actual instructions performed by the computer may differ).

In C (and some other languages descended from C), double negation (!!x) is used as an idiom to convert x to a canonical Boolean, ie. an integer with a value of either 0 or 1 and no other. Although any integer other than 0 is logically true in C and 1 is not special in this regard, it is sometimes important to ensure that a canonical value is used, for example for printing or if the number is subsequently used for arithmetic operations.[8]

Usage in colloquial language

[edit]
For use of "!vote" in Wikipedia, see Wikipedia § Dispute resolution, and Wikipedia:Polling is not a substitute for discussion § Not-votes.

The convention of using ! to signify negation occasionally surfaces in colloquial language, as computer-related slang for not. For example, the phrase !clue is used as a synonym for "no-clue" or "clueless".[9][10]

Another example is the expression !vote which means "not a vote".[11] In this context, the exclamation mark is used at Wikipedia to survey opinions while negating "majority rule", in order "to have a consensus-building discussion, where the proper course is determined by the strength of the respective arguments."[11]

Kripke semantics

[edit]

In Kripke semantics where the semantic values of formulae are sets of possible worlds, negation can be taken to mean set-theoretic complementation[citation needed] (see also possible world semantics for more).

See also

[edit]
  • Affirmation and negation (grammatical polarity)
  • Ampheck
  • Apophasis
  • Binary opposition
  • Bitwise NOT
  • Contraposition
  • Cyclic negation
  • Negation as failure
  • NOT gate
  • Plato's beard
  • Square of opposition

References

[edit]
  1. ^ Virtually all Turkish high school math textbooks use p' for negation due to the books handed out by the Ministry of National Education representing it as p'.
  2. ^ "NEGATION definition and meaning | Collins English Dictionary". www.collinsdictionary.com. 15 December 2025. Archived from the original on 20 December 2025. Retrieved 20 December 2025.
  3. ^ Weisstein, Eric W. "Negation". mathworld.wolfram.com. Retrieved 2 September 2020.
  4. ^ "Logic and Mathematical Statements - Worked Examples". www.math.toronto.edu. Retrieved 2 September 2020.
  5. ^ Beall, Jeffrey C. (2010). Logic: the basics (1. publ ed.). London: Routledge. p. 57. ISBN 978-0-203-85155-5.
  6. ^ Used as makeshift in early typewriter publications, e.g. Richard E. Ladner (January 1975). "The circuit value problem is log space complete for P". ACM SIGACT News. 7 (101): 18–20. doi:10.1145/990518.990519.
  7. ^ O'Donnell, John; Hall, Cordelia; Page, Rex (2007), Discrete Mathematics Using a Computer, Springer, p. 120, ISBN 9781846285981.
  8. ^ Egan, David. "Double Negation Operator Convert to Boolean in C". Dev Notes.
  9. ^ Raymond, Eric and Steele, Guy. The New Hacker's Dictionary, p. 18 (MIT Press 1996).
  10. ^ Munat, Judith. Lexical Creativity, Texts and Context, p. 148 (John Benjamins Publishing, 2007).
  11. ^ a b Harrison, Stephen. "Wikipedia's War on the Daily Mail", Slate Magazine (July 1, 2021).

Further reading

[edit]
  • Gabbay, Dov, and Wansing, Heinrich, eds., 1999. What is Negation?, Kluwer.
  • Horn, L., 2001. A Natural History of Negation, University of Chicago Press.
  • G. H. von Wright, 1953–59, "On the Logic of Negation", Commentationes Physico-Mathematicae 22.
  • Wansing, Heinrich, 2001, "Negation", in Goble, Lou, ed., The Blackwell Guide to Philosophical Logic, Blackwell.
  • Tettamanti, Marco; Manenti, Rosa; Della Rosa, Pasquale A.; Falini, Andrea; Perani, Daniela; Cappa, Stefano F.; Moro, Andrea (2008). "Negation in the brain: Modulating action representation". NeuroImage. 43 (2): 358–367. doi:10.1016/j.neuroimage.2008.08.004. PMID 18771737. S2CID 17658822.

External links

[edit]
  • Horn, Laurence R.; Wansing, Heinrich. "Negation". In Zalta, Edward N. (ed.). Stanford Encyclopedia of Philosophy. ISSN 1095-5054. OCLC 429049174.
  • "Negation", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
  • NOT, on MathWorld
Tables of Truth of composite clauses
  • "Table of truth for a NOT clause applied to an END sentence". Archived from the original on 1 March 2000.
  • "NOT clause of an END sentence". Archived from the original on 1 March 2000.
  • "NOT clause of an OR sentence". Archived from the original on 17 January 2000.
  • "NOT clause of an IF...THEN period". Archived from the original on 1 March 2000.
  • v
  • t
  • e
Common logical connectives
  • Tautology/True  ⊤ {\displaystyle \top } {\displaystyle \top }
  • Alternative denial (NAND gate)  ∧ ¯ {\displaystyle {\overline {\wedge }}} {\displaystyle {\overline {\wedge }}}
  • Converse implication  ⇐ {\displaystyle \Leftarrow } {\displaystyle \Leftarrow }
  • Implication (IMPLY gate)  ⇒ {\displaystyle \Rightarrow } {\displaystyle \Rightarrow }
  • Disjunction (OR gate)  ∨ {\displaystyle \lor } {\displaystyle \lor }
  • Negation (NOT gate)  ¬ {\displaystyle \neg } {\displaystyle \neg }
  • Exclusive or (XOR gate)  ⊕ {\displaystyle \oplus } {\displaystyle \oplus }
  • Biconditional (XNOR gate)  ⊙ {\displaystyle \odot } {\displaystyle \odot }
  • Statement (Digital buffer)
  • Joint denial (NOR gate)  ∨ ¯ {\displaystyle {\overline {\vee }}} {\displaystyle {\overline {\vee }}}
  • Nonimplication (NIMPLY gate)  ⇏ {\displaystyle \nRightarrow } {\displaystyle \nRightarrow }
  • Converse nonimplication  ⇍ {\displaystyle \nLeftarrow } {\displaystyle \nLeftarrow }
  • Conjunction (AND gate)  ∧ {\displaystyle \land } {\displaystyle \land }
  • Contradiction/False  ⊥ {\displaystyle \bot } {\displaystyle \bot }
Philosophy portal
  • v
  • t
  • e
Common logical symbols
∧  or  &
and
∨
or
¬  or  ~
not
→
implies
⊃
implies,
superset
↔  or  ≡
iff
|
nand
∀
universal
quantification
∃
existential
quantification
⊤
true,
tautology
⊥
false,
contradiction
⊢
entails,
proves
⊨
entails,
therefore
∴
therefore
∵
because
Philosophy portal
icon Mathematics portal
  • v
  • t
  • e
Formal semantics (natural language)
Central concepts
  • Compositionality
  • Denotation
  • Entailment
  • Extension
  • Generalized quantifier
  • Intension
  • Logical form
  • Presupposition
  • Proposition
  • Reference
  • Scope
  • Speech act
  • Syntax–semantics interface
  • Truth conditions
Topics
Areas
  • Anaphora
  • Ambiguity
  • Binding
  • Conditionals
  • Definiteness
  • Disjunction
  • Evidentiality
  • Focus
  • Indexicality
  • Lexical semantics
  • Modality
  • Negation
  • Propositional attitudes
  • Tense–aspect–mood
  • Quantification
  • Vagueness
Phenomena
  • Antecedent-contained deletion
  • Cataphora
  • Coercion
  • Conservativity
  • Counterfactuals
  • Crossover effects
  • Cumulativity
  • De dicto and de re
  • De se
  • Deontic modality
  • Discourse relations
  • Donkey anaphora
  • Epistemic modality
  • Exhaustivity
  • Faultless disagreement
  • Free choice inferences
  • Givenness
  • Homogeneity (linguistics)
  • Hurford disjunction
  • Inalienable possession
  • Intersective modification
  • Logophoricity
  • Mirativity
  • Modal subordination
  • Opaque contexts
  • Performatives
  • Polarity items
  • Privative adjectives
  • Quantificational variability effect
  • Responsive predicate
  • Rising declaratives
  • Scalar implicature
  • Sloppy identity
  • Subsective modification
  • Subtrigging
  • Telicity
  • Temperature paradox
  • Veridicality
Formalism
Formal systems
  • Alternative semantics
  • Categorial grammar
  • Combinatory categorial grammar
  • Discourse representation theory (DRT)
  • Dynamic semantics
  • Generative grammar
  • Glue semantics
  • Inquisitive semantics
  • Intensional logic
  • Lambda calculus
  • Mereology
  • Montague grammar
  • Segmented discourse representation theory (SDRT)
  • Situation semantics
  • Supervaluationism
  • Type theory
  • TTR
Concepts
  • Autonomy of syntax
  • Context set
  • Continuation
  • Conversational scoreboard
  • Downward entailing
  • Existential closure
  • Function application
  • Meaning postulate
  • Monads
  • Plural quantification
  • Possible world
  • Quantifier raising
  • Quantization
  • Question under discussion
  • Semantic parsing
  • Squiggle operator
  • Strawson entailment
  • Strict conditional
  • Type shifter
  • Universal grinder
See also
  • Cognitive semantics
  • Computational semantics
  • Distributional semantics
  • Formal grammar
  • Inferentialism
  • Logic translation
  • Linguistics wars
  • Philosophy of language
  • Pragmatics
  • Semantics of logic
  • v
  • t
  • e
Mathematical logic
General
  • Axiom
    • list
  • Cardinality
  • First-order logic
  • Formal proof
  • Formal semantics
  • Foundations of mathematics
  • Information theory
  • Lemma
  • Logical consequence
  • Model
  • Theorem
  • Theory
  • Type theory
Theorems
(list),
paradoxes
  • Gödel's completeness – incompleteness theorems
  • Tarski's undefinability
  • Banach–Tarski paradox
  • Cantor's theorem – paradox – diagonal argument
  • Compactness
  • Halting problem
  • Lindström's
  • Löwenheim–Skolem
  • Russell's paradox
Logics
Traditional
  • Classical logic
  • Logical truth
  • Tautology
  • Proposition
  • Inference
  • Logical equivalence
  • Consistency
    • Equiconsistency
  • Argument
  • Soundness
  • Validity
  • Syllogism
  • Square of opposition
  • Venn diagram
Propositional
  • Boolean algebra
  • Boolean functions
  • Logical connectives
  • Propositional calculus
  • Propositional formula
  • Truth tables
  • Many-valued logic
    • 3
    • finite
    • ∞
Predicate
  • First-order
    • list
  • Second-order
    • Monadic
  • Higher-order
  • Fixed-point
  • Free
  • Quantifiers
  • Predicate
  • Monadic predicate calculus
Set theory
  • Set
    • hereditary
  • Class
  • (Ur-)Element
  • Ordinal number
  • Extensionality
  • Forcing
  • Relation
    • equivalence
    • partition
  • Set operations:
    • intersection
    • union
    • complement
    • Cartesian product
    • power set
    • identities
Types
of sets
  • Countable
  • Uncountable
  • Empty
  • Inhabited
  • Singleton
  • Finite
  • Infinite
  • Transitive
  • Ultrafilter
  • Recursive
  • Fuzzy
  • Universal
  • Universe
    • constructible
    • Grothendieck
    • Von Neumann
Maps,
cardinality
  • Function/Map
    • domain
    • codomain
    • image
  • In/Sur/Bi-jection
  • Schröder–Bernstein theorem
  • Isomorphism
  • Gödel numbering
  • Enumeration
  • Large cardinal
    • inaccessible
  • Aleph number
  • Operation
    • binary
Theories
  • Zermelo–Fraenkel
    • axiom of choice
    • continuum hypothesis
  • General
  • Kripke–Platek
  • Morse–Kelley
  • Naive
  • New Foundations
  • Tarski–Grothendieck
  • Von Neumann–Bernays–Gödel
  • Ackermann
  • Constructive
Formal
systems

(list),
language,
syntax
  • Alphabet
  • Arity
  • Automata
  • Axiom schema
  • Expression
    • ground
  • Extension
    • by definition
    • conservative
  • Relation
  • Formation rule
  • Grammar
  • Formula
    • atomic
    • closed
    • ground
    • open
  • Free/bound variable
  • Language
  • Metalanguage
  • Logical connective
    • ¬
    • ∨
    • ∧
    • →
    • ↔
    • =
  • Predicate
    • functional
    • variable
    • propositional variable
  • Proof
  • Quantifier
    • ∃
    • !
    • ∀
    • rank
  • Sentence
    • atomic
    • spectrum
  • Signature
  • String
  • Substitution
  • Symbol
    • function
    • logical/constant
    • non-logical
    • variable
  • Term
  • Theory
    • list
Example
axiomatic
systems

(list)
  • of true arithmetic
    • Peano
    • second-order
    • elementary function
    • primitive recursive
    • Robinson
    • Skolem
  • of the real numbers
    • Tarski's axiomatization
  • of Boolean algebras
    • canonical
    • minimal axioms
  • of geometry
    • Euclidean
      • Elements
      • Hilbert's
      • Tarski's
    • non-Euclidean
  • Principia Mathematica
Proof theory
  • Formal proof
  • Natural deduction
  • Logical consequence
  • Rule of inference
  • Sequent calculus
  • Theorem
  • Systems
    • axiomatic
    • deductive
    • Hilbert
      • list
  • Complete theory
  • Independence (from ZFC)
  • Proof of impossibility
  • Ordinal analysis
  • Reverse mathematics
  • Self-verifying theories
Model theory
  • Interpretation
    • function
    • of models
  • Model
    • atomic
    • equivalence
    • finite
    • prime
    • saturated
    • spectrum
    • submodel
  • Non-standard model
    • of non-standard arithmetic
  • Diagram
    • elementary
  • Categorical theory
  • Model complete theory
  • Satisfiability
  • Semantics of logic
  • Strength
  • Theories of truth
    • semantic
    • Tarski's
    • Kripke's
  • T-schema
  • Transfer principle
  • Truth predicate
  • Truth value
  • Type
  • Ultraproduct
  • Validity
Computability
theory
  • Church encoding
  • Church–Turing thesis
  • Computably enumerable
  • Computable function
  • Computable set
  • Decision problem
    • decidable
    • undecidable
    • P
    • NP
    • P versus NP problem
  • Kolmogorov complexity
  • Lambda calculus
  • Primitive recursive function
  • Recursion
  • Recursive set
  • Turing machine
  • Type theory
Related
  • Abstract logic
  • Algebraic logic
  • Automated theorem proving
  • Category theory
  • Concrete/Abstract category
  • Category of sets
  • History of logic
  • History of mathematical logic
    • timeline
  • Logicism
  • Mathematical object
  • Philosophy of mathematics
  • Supertask
icon Mathematics portal
Authority control databases Edit this at Wikidata
  • GND
Retrieved from "https://teknopedia.ac.id/w/index.php?title=Negation&oldid=1333172530"
Categories:
  • Semantics
  • Logical connectives
  • Unary operations
  • Formal semantics (natural language)
Hidden categories:
  • Articles with short description
  • Short description is different from Wikidata
  • Use dmy dates from March 2020
  • All articles with unsourced statements
  • Articles with unsourced statements from August 2012
  • Articles with example C++ code

  • indonesia
  • Polski
  • العربية
  • Deutsch
  • English
  • Español
  • Français
  • Italiano
  • مصرى
  • Nederlands
  • 日本語
  • Português
  • Sinugboanong Binisaya
  • Svenska
  • Українська
  • Tiếng Việt
  • Winaray
  • 中文
  • Русский
Sunting pranala
url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url
Pusat Layanan

UNIVERSITAS TEKNOKRAT INDONESIA | ASEAN's Best Private University
Jl. ZA. Pagar Alam No.9 -11, Labuhan Ratu, Kec. Kedaton, Kota Bandar Lampung, Lampung 35132
Phone: (0721) 702022
Email: pmb@teknokrat.ac.id