Epstein Files Full PDF

CLICK HERE
Technopedia Center
PMB University Brochure
Faculty of Engineering and Computer Science
S1 Informatics S1 Information Systems S1 Information Technology S1 Computer Engineering S1 Electrical Engineering S1 Civil Engineering

faculty of Economics and Business
S1 Management S1 Accountancy

Faculty of Letters and Educational Sciences
S1 English literature S1 English language education S1 Mathematics education S1 Sports Education
teknopedia

  • Registerasi
  • Brosur UTI
  • Kip Scholarship Information
  • Performance
Flag Counter
  1. World Encyclopedia
  2. Quantum optics - Wikipedia
Quantum optics - Wikipedia
Listen to this article
From Wikipedia, the free encyclopedia
Sub-field of quantum physics and optics
"Quantum electronics" redirects here. For the journal, see Quantum Electronics (journal).
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
icon
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Quantum optics" – news · newspapers · books · scholar · JSTOR
(April 2025) (Learn how and when to remove this message)
This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (April 2025) (Learn how and when to remove this message)
(Learn how and when to remove this message)

Quantum optics is a branch of atomic, molecular, and optical physics and quantum chemistry that studies the behavior of photons (individual quanta of light). It includes the study of the particle-like properties of photons and their interaction with, for instance, atoms and molecules. Photons have been used to test many of the counter-intuitive predictions of quantum mechanics, such as entanglement and teleportation, and are a useful resource for quantum information processing.

History

[edit]

Light propagating in a restricted volume of space has its energy and momentum quantized according to an integer number of particles known as photons. Quantum optics studies the nature and effects of light as quantized photons. The first major development leading to that understanding was the correct modeling of the blackbody radiation spectrum by Max Planck in 1899 under the hypothesis of light being emitted in discrete units of energy. The photoelectric effect was further evidence of this quantization as explained by Albert Einstein in a 1905 paper, a discovery for which he was to be awarded the Nobel Prize in 1921. Niels Bohr showed that the hypothesis of optical radiation being quantized corresponded to his theory of the quantized energy levels of atoms, and the spectrum of discharge emission from hydrogen in particular. The understanding of the interaction between light and matter following these developments was crucial for the development of quantum mechanics as a whole. However, the subfields of quantum mechanics dealing with matter-light interaction were principally regarded as research into matter rather than into light; hence one rather spoke of atom physics and quantum electronics in 1960. Laser science—i.e., research into principles, design and application of these devices—became an important field, and the quantum mechanics underlying the laser's principles was studied now with more emphasis on the properties of light[dubious – discuss], and the name quantum optics became customary.

As laser science needed good theoretical foundations, and also because research into these soon proved very fruitful, interest in quantum optics rose. Following the work of Dirac in quantum field theory, John R. Klauder, George Sudarshan, Roy J. Glauber, and Leonard Mandel applied quantum theory to the electromagnetic field in the 1950s and 1960s to gain a more detailed understanding of photodetection and the statistics of light (see degree of coherence). This led to the introduction of the coherent state as a concept that addressed variations between laser light, thermal light, exotic squeezed states, etc. as it became understood that light cannot be fully described just referring to the electromagnetic fields describing the waves in the classical picture. In 1977, Kimble et al. demonstrated a single atom emitting one photon at a time, further compelling evidence that light consists of photons. Previously unknown quantum states of light with characteristics unlike classical states, such as squeezed light were subsequently discovered.

Development of short and ultrashort laser pulses—created by Q switching and modelocking techniques—opened the way to the study of what became known as ultrafast processes.[1] Applications for solid state research (e.g. Raman spectroscopy) were found, and mechanical forces of light on matter were studied. The latter led to levitating and positioning clouds of atoms or even small biological samples in an optical trap or optical tweezers by laser beam. This, along with Doppler cooling and Sisyphus cooling, was the crucial technology needed to achieve the celebrated Bose–Einstein condensation.

Other remarkable results are the demonstration of quantum entanglement, quantum teleportation, and quantum logic gates. The latter are of much interest in quantum information theory, a subject that partly emerged from quantum optics, partly from theoretical computer science.[2]

Today's fields of interest among quantum optics researchers include parametric down-conversion, parametric oscillation, even shorter (attosecond) light pulses, use of quantum optics for quantum information, manipulation of single atoms, Bose–Einstein condensates, their application, and how to manipulate them (a sub-field often called atom optics), coherent perfect absorbers, and many more. Topics classified under the term of quantum optics, especially as applied to engineering and technological innovation, often go under the modern term photonics.

Several Nobel Prizes have been awarded for work in quantum optics. These were awarded as follows:

  • in 1997, Steven Chu, Claude Cohen-Tannoudji and William Daniel Phillips "for laser cooling".[3]
  • in 2001, Wolfgang Ketterle, Eric Allin Cornell and Carl Wieman "for experimental verification of the Bose-Einstein condensation".[4]
  • in 2005, Theodor W. Hänsch, Roy J. Glauber and John L. Hall "for development of quantum theory of light and development of optical frequency measuring technique".[5]
  • in 2012, Serge Haroche and David J. Wineland "for ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems".[6]
  • in 2022, Alain Aspect, John Clauser and Anton Zeilinger "for experiments with entangled photons, establishing the violation of Bell inequalities and pioneering quantum information science".[7]

Concepts

[edit]

According to quantum theory, light may be considered not only to be an electro-magnetic wave but also a "stream" of particles called photons, which travel with c, the speed of light in vacuum. These particles should not be considered to be classical billiard balls, but quantum mechanical particles described by a wavefunction spread over a finite region.

Each particle carries one quantum of energy, equal to hf, where h is the Planck constant and f is the frequency of the light. That energy possessed by a single photon corresponds exactly to the transition between discrete energy levels in an atom (or other system) that emitted the photon; material absorption of a photon is the reverse process. Einstein's explanation of spontaneous emission also predicted the existence of stimulated emission, the principle upon which the laser rests. However, the actual invention of the maser (and laser) many years later was dependent on a method to produce a population inversion.

The use of statistical mechanics is fundamental to the concepts of quantum optics: light is described in terms of field operators for creation and annihilation of photons—i.e. in the language of quantum electrodynamics.

A frequently encountered state of the light field is the coherent state, as introduced by E.C. George Sudarshan in 1960. This state, which can be used to approximately describe the output of a single-frequency laser well above the laser threshold, exhibits Poissonian photon number statistics. Via certain nonlinear interactions, a coherent state can be transformed into a squeezed coherent state, by applying a squeezing operator that can exhibit super- or sub-Poissonian photon statistics. Such light is called squeezed light. Other important quantum aspects are related to correlations of photon statistics between different beams. For example, spontaneous parametric down-conversion can generate so-called 'twin beams', where (ideally) each photon of one beam is associated with a photon in the other beam.

Atoms are considered as quantum mechanical oscillators with a discrete energy spectrum, with the transitions between the energy eigenstates being driven by the absorption or emission of light according to Einstein's theory.

For solid state matter, one uses the energy band models of solid state physics. This is important for understanding how light is detected by solid-state devices, commonly used in experiments.

Quantum electronics

[edit]

Quantum electronics is a term that was used mainly between the 1950s and 1970s[8] to denote the area of physics dealing with the effects of quantum mechanics on the behavior of electrons in matter, together with their interactions with photons. Today, it is rarely considered a sub-field in its own right, and it has been absorbed by other fields. Solid state physics regularly takes quantum mechanics into account, and is usually concerned with electrons. Specific applications of quantum mechanics in electronics is researched within semiconductor physics. The term also encompassed the basic processes of laser operation, which is today studied as a topic in quantum optics. Usage of the term overlapped early work on the quantum Hall effect and quantum cellular automata.

Applications

[edit]
  1. Quantum Cryptography (QKD) – Secure communication using single photons and entanglement (e.g., BB84 protocol)
  2. Photonic Quantum Computing – Using photons as qubits to store and process quantum information.
  3. Trapped Ion Quantum Computing – Uses lasers and magnetic fields to trap ions and process quantum information.
  4. Atomic Clocks – World’s most precise clocks using optical transitions in atoms.
  5. Interferometry – Precision measurements of length, time, and frequency.

See also

[edit]
  • iconPhysics portal
  • Atomic, molecular, and optical physics
  • Attophysics
  • Nonclassical light
  • Optomechanics
  • Quantum control
  • Optical phase space
  • Optical physics
  • Optics
  • Quantization of the electromagnetic field
  • Two-state quantum system
  • Spinplasmonics
  • Valleytronics

Notes

[edit]
  1. ^ Walmsley, Ian A.; Dorrer, Christophe (2009). "Characterization of ultrashort electromagnetic pulses". Advances in Optics and Photonics. 1 (2): 308. Bibcode:2009AdOP....1..308W. doi:10.1364/aop.1.000308. Retrieved 2025-07-31.
  2. ^ Nielsen, Michael A.; Chuang, Isaac L. (2010). Quantum computation and quantum information (10th anniversary ed.). Cambridge: Cambridge University Press. ISBN 978-1107002173.
  3. ^ "The Nobel Prize in Physics 1997". Nobelprize.org. Retrieved 2015-10-14.
  4. ^ "The Nobel Prize in Physics 2001". Nobelprize.org. Retrieved 2015-10-14.
  5. ^ "The Nobel Prize in Physics 2005". Nobelprize.org. Retrieved 2015-10-14.
  6. ^ "The Nobel Prize in Physics 2012". Nobel Foundation. Retrieved 9 October 2012.
  7. ^ "The Nobel Prize in Physics 2022". Nobel Foundation. Retrieved 9 June 2023.
  8. ^ Brunner, Witlof; Radloff, Wolfgang; Junge, Klaus (1975). Quantenelektronik (in German). Deutscher Verlag der Wissenschaften.

References

[edit]
  • Gerry, Christopher; Knight, Peter (2004). Introduction to Quantum Optics. Cambridge University Press. ISBN 052152735X.
  • The Nobel Prize in Physics 2005

Further reading

[edit]
  • L. Mandel, E. Wolf Optical Coherence and Quantum Optics (Cambridge 1995).
  • D. F. Walls and G. J. Milburn Quantum Optics (Springer 1994).
  • Crispin Gardiner and Peter Zoller, Quantum Noise (Springer 2004).
  • H.M. Moya-Cessa and F. Soto-Eguibar, Introduction to Quantum Optics (Rinton Press 2011).
  • M. O. Scully and M. S. Zubairy Quantum Optics (Cambridge 1997).
  • W. P. Schleich Quantum Optics in Phase Space (Wiley 2001).
  • Kira, M.; Koch, S. W. (2011). Semiconductor Quantum Optics. Cambridge University Press. ISBN 978-0521875097.
  • F. J. Duarte (2014). Quantum Optics for Engineers. New York: CRC. ISBN 978-1439888537.

External links

[edit]
Listen to this article (10 minutes)
Spoken Wikipedia icon
This audio file was created from a revision of this article dated 11 August 2009 (2009-08-11), and does not reflect subsequent edits.
(Audio help · More spoken articles)
  • An introduction to quantum optics of the light field
  • Encyclopedia of laser physics and technology, with content on quantum optics (particularly quantum noise in lasers), by Rüdiger Paschotta.
  • Qwiki – a quantum physics wiki devoted to providing technical resources for practicing quantum physicists.
  • Quantiki Archived 2010-04-03 at the Wayback Machine – a free-content WWW resource in quantum information science that anyone can edit.
  • Various Quantum Optics Reports Archived 2019-01-24 at the Wayback Machine
  • v
  • t
  • e
Major branches of physics
Divisions
  • Pure
  • Applied
    • Engineering
Approaches
  • Experimental
  • Theoretical
    • Computational
Classical
  • Classical mechanics
    • Newtonian
    • Analytical
    • Celestial
    • Continuum
  • Acoustics
  • Classical electromagnetism
  • Classical optics
    • Ray
    • Wave
  • Thermodynamics
    • Statistical
    • Non-equilibrium
Modern
  • Relativistic mechanics
    • Special
    • General
  • Nuclear physics
  • Particle physics
  • Quantum mechanics
  • Atomic, molecular, and optical physics
    • Atomic
    • Molecular
    • Modern optics
  • Condensed matter physics
    • Solid-state physics
    • Crystallography
Interdisciplinary
  • Astrophysics (outline)
  • Atmospheric physics
  • Biophysics
  • Chemical physics
  • Geophysics
  • Materials science
  • Mathematical physics
  • Medical physics
  • Ocean physics
  • Quantum information science
Related
  • History of physics
  • Nobel Prize in Physics
  • Philosophy of physics
  • Physics education
    • research
  • Timeline of physics discoveries
  • v
  • t
  • e
Operators in physics
General
Space and time
  • d'Alembertian
  • Parity
  • Time
Particles
  • C-symmetry
Operators for operators
  • Anti-symmetric operator
  • Ladder operator
Quantum
Fundamental
  • Momentum
  • Position
  • Rotation
Energy
  • Total energy
  • Hamiltonian
  • Kinetic energy
Angular momentum
  • Total
  • Orbital
  • Spin
Electromagnetism
  • Transition dipole moment
Optics
  • Displacement
  • Hanbury Brown and Twiss effect
  • Out-of-time-ordered correlator
  • Squeeze
Particle physics
  • Casimir invariant
  • Creation and annihilation
  • v
  • t
  • e
Quantum mechanics
Background
  • Introduction
  • History
    • Timeline
  • Classical mechanics
  • Old quantum theory
  • Glossary
Fundamentals
  • Born rule
  • Bra–ket notation
  • Complementarity
  • Density matrix
  • Energy level
    • Ground state
    • Excited state
    • Degenerate levels
    • Zero-point energy
  • Entanglement
  • Hamiltonian
  • Interference
  • Decoherence
  • Measurement
  • Nonlocality
  • Quantum state
    • quantum jump
  • Superposition
  • Tunnelling
  • Scattering theory
  • Symmetry in quantum mechanics
  • Uncertainty
  • Wave function
    • Collapse
    • Wave–particle duality
Formulations
  • Formulations
  • Heisenberg
  • Interaction
  • Matrix mechanics
  • Schrödinger
  • Path integral formulation
  • Phase space
Equations
  • Klein–Gordon
  • Dirac
  • Weyl
  • Majorana
  • Rarita–Schwinger
  • Pauli
  • Rydberg
  • Schrödinger
Interpretations
  • Bayesian
  • Consciousness causes collapse
  • Consistent histories
  • Copenhagen
  • de Broglie–Bohm
  • Ensemble
  • Hidden-variable
    • Local
      • Superdeterminism
  • Many-worlds
  • Objective collapse
  • Quantum logic
  • Relational
  • Transactional
Experiments
  • Bell test
  • Davisson–Germer
  • Delayed-choice quantum eraser
  • Double-slit
  • Franck–Hertz
  • Mach–Zehnder interferometer
  • Elitzur–Vaidman
  • Popper
  • Quantum eraser
  • Stern–Gerlach
  • Wheeler's delayed choice
Science
  • Quantum biology
  • Quantum chemistry
  • Quantum chaos
  • Quantum cosmology
  • Quantum differential calculus
  • Quantum dynamics
  • Quantum geometry
  • Quantum measurement problem
  • Quantum mind
  • Quantum stochastic calculus
  • Quantum spacetime
Technology
  • Quantum algorithms
  • Quantum amplifier
  • Quantum bus
  • Quantum cellular automata
    • Quantum finite automata
  • Quantum channel
  • Quantum circuit
  • Quantum complexity theory
  • Quantum computing
    • Timeline
  • Quantum cryptography
  • Quantum electronics
  • Quantum error correction
  • Quantum imaging
  • Quantum image processing
  • Quantum information
  • Quantum key distribution
  • Quantum logic
  • Quantum logic gates
  • Quantum machine
  • Quantum machine learning
  • Quantum metamaterial
  • Quantum metrology
  • Quantum network
  • Quantum neural network
  • Quantum optics
  • Quantum programming
  • Quantum sensing
  • Quantum simulator
  • Quantum teleportation
Extensions
  • Quantum fluctuation
  • Casimir effect
  • Quantum statistical mechanics
  • Quantum field theory
    • History
  • Quantum gravity
  • Relativistic quantum mechanics
Related
  • Schrödinger's cat
    • in popular culture
  • Wigner's friend
  • EPR paradox
  • Quantum mysticism
  • Category
  • v
  • t
  • e
Quantum information science
General
  • DiVincenzo's criteria
  • NISQ era
  • Quantum computing
    • timeline
  • Quantum information
  • Quantum programming
  • Quantum simulation
  • Qubit
    • physical vs. logical
  • Quantum processors
    • cloud-based
Theorems
  • Bell's
  • Eastin–Knill
  • Gleason's
  • Gottesman–Knill
  • Holevo's
  • No-broadcasting
  • No-cloning
  • No-communication
  • No-deleting
  • No-hiding
  • No-teleportation
  • PBR
  • Quantum speed limit
  • Threshold
  • Solovay–Kitaev
  • Schrödinger-HJW
Quantum
communication
  • Classical capacity
    • entanglement-assisted
    • quantum capacity
  • Entanglement distillation
  • Entanglement swapping
  • Monogamy of entanglement
  • LOCC
  • Quantum channel
    • quantum network
  • State purification
  • Quantum teleportation
    • quantum energy teleportation
    • quantum gate teleportation
  • Superdense coding
Quantum cryptography
  • Hidden matching
  • Post-quantum cryptography
  • Quantum coin flipping
  • Quantum money
  • Quantum key distribution
    • BB84
    • SARG04
    • other protocols
  • Quantum secret sharing
Quantum algorithms
  • Algorithmic cooling
  • Amplitude amplification
  • Bernstein–Vazirani
  • BHT
  • Boson sampling
  • Deutsch–Jozsa
  • Grover's
  • HHL
  • Hidden subgroup
  • Magic state distillation
  • Quantum annealing
  • Quantum counting
  • Quantum Fourier transform
  • Quantum optimization
  • Quantum phase estimation
  • Shor's
  • Simon's
  • VQE
Quantum
complexity theory
  • BQP
  • DQC1
  • EQP
  • QIP
  • QMA
  • PostBQP
Quantum
processor benchmarks
  • Quantum supremacy
  • Quantum volume
  • QC scaling laws
  • Randomized benchmarking
    • XEB
  • Relaxation times
    • T1
    • T2
Quantum
computing models
  • Adiabatic quantum computation
  • Continuous-variable quantum information
  • One-way quantum computer
    • cluster state
  • Quantum circuit
    • quantum logic gate
  • Quantum machine learning
    • quantum neural network
  • Quantum Turing machine
  • Topological quantum computer
  • Hamiltonian quantum computation
Quantum
error correction
  • Codes
    • 5 qubit
    • CSS
    • GKP
    • quantum convolutional
    • stabilizer
    • Shor
    • Bacon–Shor
    • Steane
    • Toric
    • gnu
  • Entanglement-assisted
Physical
implementations
Quantum optics
  • Cavity QED
  • Circuit QED
  • Linear optical QC
  • KLM protocol
Ultracold atoms
  • Neutral atom QC
  • Trapped-ion QC
Spin-based
  • Kane QC
  • Spin qubit QC
  • NV center
  • NMR QC
Superconducting
  • Charge qubit
  • Flux qubit
  • Phase qubit
  • Transmon
Quantum
programming
  • OpenQASM–Qiskit–IBM QX
  • Quil–Forest/Rigetti QCS
  • Cirq
  • Q#
  • libquantum
  • many others...
  • Quantum information science
  • Quantum mechanics topics
Authority control databases Edit this at Wikidata
International
  • GND
National
  • United States
  • France
  • BnF data
  • Czech Republic
  • Israel
Other
  • Yale LUX
Retrieved from "https://teknopedia.ac.id/w/index.php?title=Quantum_optics&oldid=1332492163"
Categories:
  • Quantum optics
  • Optics
Hidden categories:
  • CS1 German-language sources (de)
  • Articles with short description
  • Short description matches Wikidata
  • Articles needing additional references from April 2025
  • All articles needing additional references
  • Articles lacking in-text citations from April 2025
  • All articles lacking in-text citations
  • Articles with multiple maintenance issues
  • All accuracy disputes
  • Articles with disputed statements from May 2013
  • Articles with hAudio microformats
  • Spoken articles
  • Webarchive template wayback links

  • indonesia
  • Polski
  • العربية
  • Deutsch
  • English
  • Español
  • Français
  • Italiano
  • مصرى
  • Nederlands
  • 日本語
  • Português
  • Sinugboanong Binisaya
  • Svenska
  • Українська
  • Tiếng Việt
  • Winaray
  • 中文
  • Русский
Sunting pranala
url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url
Pusat Layanan

UNIVERSITAS TEKNOKRAT INDONESIA | ASEAN's Best Private University
Jl. ZA. Pagar Alam No.9 -11, Labuhan Ratu, Kec. Kedaton, Kota Bandar Lampung, Lampung 35132
Phone: (0721) 702022
Email: pmb@teknokrat.ac.id