Epstein Files Full PDF

CLICK HERE
Technopedia Center
PMB University Brochure
Faculty of Engineering and Computer Science
S1 Informatics S1 Information Systems S1 Information Technology S1 Computer Engineering S1 Electrical Engineering S1 Civil Engineering

faculty of Economics and Business
S1 Management S1 Accountancy

Faculty of Letters and Educational Sciences
S1 English literature S1 English language education S1 Mathematics education S1 Sports Education
teknopedia

  • Registerasi
  • Brosur UTI
  • Kip Scholarship Information
  • Performance
Flag Counter
  1. World Encyclopedia
  2. Implicit differentiation - Wikipedia
Implicit differentiation - Wikipedia
From Wikipedia, the free encyclopedia
Mathematical operation in calculus
icon
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Implicit differentiation" – news · newspapers · books · scholar · JSTOR
(November 2025) (Learn how and when to remove this message)
Part of a series of articles about
Calculus
∫ a b f ′ ( t ) d t = f ( b ) − f ( a ) {\displaystyle \int _{a}^{b}f'(t)\,dt=f(b)-f(a)} {\displaystyle \int _{a}^{b}f'(t)\,dt=f(b)-f(a)}
  • Fundamental theorem
  • Limits
  • Continuity
  • Rolle's theorem
  • Mean value theorem
  • Inverse function theorem
Differential
Definitions
  • Derivative (generalizations)
  • Differential
    • infinitesimal
    • of a function
    • total
Concepts
  • Differentiation notation
  • Second derivative
  • Implicit differentiation
  • Logarithmic differentiation
  • Related rates
  • Taylor's theorem
Rules and identities
  • Sum
  • Product
  • Chain
  • Power
  • Quotient
  • L'Hôpital's rule
  • Inverse
  • General Leibniz
  • Faà di Bruno's formula
  • Reynolds
Integral
  • Lists of integrals
  • Integral transform
  • Leibniz integral rule
Definitions
  • Antiderivative
  • Integral (improper)
  • Riemann integral
  • Lebesgue integration
  • Contour integration
  • Integral of inverse functions
Integration by
  • Parts
  • Discs
  • Cylindrical shells
  • Substitution (trigonometric, tangent half-angle, Euler)
  • Euler's formula
  • Partial fractions (Heaviside's method)
  • Changing order
  • Reduction formulae
  • Differentiating under the integral sign
  • Risch algorithm
Series
  • Geometric (arithmetico-geometric)
  • Harmonic
  • Alternating
  • Power
  • Binomial
  • Taylor
Convergence tests
  • Summand limit (term test)
  • Ratio
  • Root
  • Integral
  • Direct comparison

  • Limit comparison
  • Alternating series
  • Cauchy condensation
  • Dirichlet
  • Abel
Vector
  • Gradient
  • Divergence
  • Curl
  • Laplacian
  • Directional derivative
  • Identities
Theorems
  • Gradient
  • Green's
  • Stokes'
  • Divergence
  • Generalized Stokes
  • Helmholtz decomposition
Multivariable
Formalisms
  • Matrix
  • Tensor
  • Exterior
  • Geometric
Definitions
  • Partial derivative
  • Multiple integral
  • Line integral
  • Surface integral
  • Volume integral
  • Jacobian
  • Hessian
Advanced
  • Calculus on Euclidean space
  • Generalized functions
  • Limit of distributions
Specialized
  • Fractional
  • Malliavin
  • Stochastic
  • Variations
Miscellanea
  • Precalculus
  • History
  • Glossary
  • List of topics
  • Integration Bee
  • Mathematical analysis
  • Nonstandard analysis
  • v
  • t
  • e

In calculus, implicit differentiation is a method of finding the derivative of an implicit function using the chain rule. To differentiate an implicit function y(x), defined by an equation R(x, y) = 0, it is not generally possible to solve it explicitly for y and then differentiate it. Instead, one can totally differentiate R(x, y) = 0 with respect to x and y and then solve the resulting linear equation for ⁠dy/dx⁠, to get the derivative explicitly in terms of x and y. Even when it is possible to explicitly solve the original equation, the formula resulting from total differentiation is, in general, much simpler and easier to use.

Formulation

[edit]

If R(x, y) = 0, the derivative of the implicit function y(x) is given by[1]: §11.5 

d y d x = − ∂ R ∂ x ∂ R ∂ y = − R x R y , {\displaystyle {\frac {dy}{dx}}=-{\frac {\,{\frac {\partial R}{\partial x}}\,}{\frac {\partial R}{\partial y}}}=-{\frac {R_{x}}{R_{y}}}\,,} {\displaystyle {\frac {dy}{dx}}=-{\frac {\,{\frac {\partial R}{\partial x}}\,}{\frac {\partial R}{\partial y}}}=-{\frac {R_{x}}{R_{y}}}\,,}

where Rx and Ry indicate the partial derivatives of R with respect to x and y.

The above formula comes from using the generalized chain rule to obtain the total derivative — with respect to x — of both sides of R(x, y) = 0:

∂ R ∂ x d x d x + ∂ R ∂ y d y d x = 0 , {\displaystyle {\frac {\partial R}{\partial x}}{\frac {dx}{dx}}+{\frac {\partial R}{\partial y}}{\frac {dy}{dx}}=0\,,} {\displaystyle {\frac {\partial R}{\partial x}}{\frac {dx}{dx}}+{\frac {\partial R}{\partial y}}{\frac {dy}{dx}}=0\,,}

hence

∂ R ∂ x + ∂ R ∂ y d y d x = 0 , {\displaystyle {\frac {\partial R}{\partial x}}+{\frac {\partial R}{\partial y}}{\frac {dy}{dx}}=0\,,} {\displaystyle {\frac {\partial R}{\partial x}}+{\frac {\partial R}{\partial y}}{\frac {dy}{dx}}=0\,,}

which, when solved for ⁠dy/dx⁠, gives the expression above.

Examples

[edit]

Example 1

[edit]

Consider

y + x + 5 = 0 . {\displaystyle y+x+5=0\,.} {\displaystyle y+x+5=0\,.}

This equation is easy to solve for y, giving

y = − x − 5 , {\displaystyle y=-x-5\,,} {\displaystyle y=-x-5\,,}

where the right side is the explicit form of the function y(x). Differentiation then gives ⁠dy/dx⁠ = −1.

Alternatively, one can totally differentiate the original equation:

d y d x + d x d x + d d x ( 5 ) = 0 ; d y d x + 1 + 0 = 0 . {\displaystyle {\begin{aligned}{\frac {dy}{dx}}+{\frac {dx}{dx}}+{\frac {d}{dx}}(5)&=0\,;\\[6px]{\frac {dy}{dx}}+1+0&=0\,.\end{aligned}}} {\displaystyle {\begin{aligned}{\frac {dy}{dx}}+{\frac {dx}{dx}}+{\frac {d}{dx}}(5)&=0\,;\\[6px]{\frac {dy}{dx}}+1+0&=0\,.\end{aligned}}}

Solving for ⁠dy/dx⁠ gives

d y d x = − 1 , {\displaystyle {\frac {dy}{dx}}=-1\,,} {\displaystyle {\frac {dy}{dx}}=-1\,,}

the same answer as obtained previously.

Example 2

[edit]

An example of an implicit function for which implicit differentiation is easier than using explicit differentiation is the function y(x) defined by the equation

x 4 + 2 y 2 = 8 . {\displaystyle x^{4}+2y^{2}=8\,.} {\displaystyle x^{4}+2y^{2}=8\,.}

To differentiate this explicitly with respect to x, one has first to get

y ( x ) = ± 8 − x 4 2 , {\displaystyle y(x)=\pm {\sqrt {\frac {8-x^{4}}{2}}}\,,} {\displaystyle y(x)=\pm {\sqrt {\frac {8-x^{4}}{2}}}\,,}

and then differentiate this function. This creates two derivatives: one for y ≥ 0 and another for y < 0.

It is substantially easier to implicitly differentiate the original equation:

4 x 3 + 4 y d y d x = 0 , {\displaystyle 4x^{3}+4y{\frac {dy}{dx}}=0\,,} {\displaystyle 4x^{3}+4y{\frac {dy}{dx}}=0\,,}

giving

d y d x = − 4 x 3 4 y = − x 3 y . {\displaystyle {\frac {dy}{dx}}={\frac {-4x^{3}}{4y}}=-{\frac {x^{3}}{y}}\,.} {\displaystyle {\frac {dy}{dx}}={\frac {-4x^{3}}{4y}}=-{\frac {x^{3}}{y}}\,.}

Example 3

[edit]

Often, it is difficult or impossible to solve explicitly for y, and implicit differentiation is the only feasible method of differentiation. An example is the equation

y 5 − y = x . {\displaystyle y^{5}-y=x\,.} {\displaystyle y^{5}-y=x\,.}

It is impossible to algebraically express y explicitly as a function of x, and therefore one cannot find ⁠dy/dx⁠ by explicit differentiation. Using the implicit method, ⁠dy/dx⁠ can be obtained by differentiating the equation to obtain

5 y 4 d y d x − d y d x = d x d x , {\displaystyle 5y^{4}{\frac {dy}{dx}}-{\frac {dy}{dx}}={\frac {dx}{dx}}\,,} {\displaystyle 5y^{4}{\frac {dy}{dx}}-{\frac {dy}{dx}}={\frac {dx}{dx}}\,,}

where ⁠dx/dx⁠ = 1. Factoring out ⁠dy/dx⁠ shows that

( 5 y 4 − 1 ) d y d x = 1 , {\displaystyle \left(5y^{4}-1\right){\frac {dy}{dx}}=1\,,} {\displaystyle \left(5y^{4}-1\right){\frac {dy}{dx}}=1\,,}

which yields the result

d y d x = 1 5 y 4 − 1 , {\displaystyle {\frac {dy}{dx}}={\frac {1}{5y^{4}-1}}\,,} {\displaystyle {\frac {dy}{dx}}={\frac {1}{5y^{4}-1}}\,,}

which is defined for

y ≠ ± 1 5 4 and y ≠ ± i 5 4 . {\displaystyle y\neq \pm {\frac {1}{\sqrt[{4}]{5}}}\quad {\text{and}}\quad y\neq \pm {\frac {i}{\sqrt[{4}]{5}}}\,.} {\displaystyle y\neq \pm {\frac {1}{\sqrt[{4}]{5}}}\quad {\text{and}}\quad y\neq \pm {\frac {i}{\sqrt[{4}]{5}}}\,.}

References

[edit]
  1. ^ Stewart, James (1998). Calculus Concepts And Contexts. Brooks/Cole Publishing Company. ISBN 0-534-34330-9.
  • iconMathematics portal
  • v
  • t
  • e
Calculus
Precalculus
  • Binomial theorem
  • Concave function
  • Continuous function
  • Factorial
  • Finite difference
  • Free variables and bound variables
  • Graph of a function
  • Linear function
  • Radian
  • Rolle's theorem
  • Secant
  • Slope
  • Tangent
Limits
  • Indeterminate form
  • Limit of a function
    • One-sided limit
  • Limit of a sequence
  • Order of approximation
  • (ε, δ)-definition of limit
Differential calculus
  • Derivative
  • Second derivative
  • Partial derivative
  • Differential
  • Differential operator
  • Mean value theorem
  • Notation
    • Leibniz's notation
    • Newton's notation
  • Rules of differentiation
    • linearity
    • Power
    • Sum
    • Chain
    • L'Hôpital's
    • Product
      • General Leibniz's rule
    • Quotient
  • Other techniques
    • Implicit differentiation
    • Inverse function rule
    • Logarithmic derivative
    • Related rates
  • Stationary points
    • First derivative test
    • Second derivative test
    • Extreme value theorem
    • Maximum and minimum
  • Further applications
    • Newton's method
    • Taylor's theorem
  • Differential equation
    • Ordinary differential equation
    • Partial differential equation
    • Stochastic differential equation
Integral calculus
  • Antiderivative
  • Arc length
  • Riemann integral
  • Basic properties
  • Constant of integration
  • Fundamental theorem of calculus
    • Differentiating under the integral sign
  • Integration by parts
  • Integration by substitution
    • trigonometric
    • Euler
    • Tangent half-angle substitution
  • Partial fractions in integration
    • Quadratic integral
  • Trapezoidal rule
  • Volumes
    • Washer method
    • Shell method
  • Integral equation
  • Integro-differential equation
Vector calculus
  • Derivatives
    • Curl
    • Directional derivative
    • Divergence
    • Gradient
    • Laplacian
  • Basic theorems
    • Line integrals
    • Green's
    • Stokes'
    • Gauss'
Multivariable calculus
  • Divergence theorem
  • Geometric
  • Hessian matrix
  • Jacobian matrix and determinant
  • Lagrange multiplier
  • Line integral
  • Matrix
  • Multiple integral
  • Partial derivative
  • Surface integral
  • Volume integral
  • Advanced topics
    • Differential forms
    • Exterior derivative
    • Generalized Stokes' theorem
    • Tensor calculus
Sequences and series
  • Arithmetico-geometric sequence
  • Types of series
    • Alternating
    • Binomial
    • Fourier
    • Geometric
    • Harmonic
    • Infinite
    • Power
      • Maclaurin
      • Taylor
    • Telescoping
  • Tests of convergence
    • Abel's
    • Alternating series
    • Cauchy condensation
    • Direct comparison
    • Dirichlet's
    • Integral
    • Limit comparison
    • Ratio
    • Root
    • Term
Special functions
and numbers
  • Bernoulli numbers
  • e (mathematical constant)
  • Exponential function
  • Natural logarithm
  • Stirling's approximation
History of calculus
  • Adequality
  • Brook Taylor
  • Colin Maclaurin
  • Generality of algebra
  • Gottfried Wilhelm Leibniz
  • Infinitesimal
  • Infinitesimal calculus
  • Isaac Newton
  • Fluxion
  • Law of Continuity
  • Leonhard Euler
  • Method of Fluxions
  • The Method of Mechanical Theorems
Lists
Integrals
  • rational functions
  • irrational algebraic functions
  • exponential functions
  • logarithmic functions
  • hyperbolic functions
    • inverse
  • trigonometric functions
    • inverse
    • Secant
    • Secant cubed
  • List of limits
  • List of derivatives
Miscellaneous topics
  • Complex calculus
    • Contour integral
  • Differential geometry
    • Manifold
    • Curvature
    • of curves
    • of surfaces
    • Tensor
  • Euler–Maclaurin formula
  • Gabriel's horn
  • Integration Bee
  • Proof that 22/7 exceeds π
  • Regiomontanus' angle maximization problem
  • Steinmetz solid
Retrieved from "https://teknopedia.ac.id/w/index.php?title=Implicit_differentiation&oldid=1325065629"
Category:
  • Differential calculus
Hidden categories:
  • Articles with short description
  • Short description matches Wikidata
  • Articles needing additional references from November 2025
  • All articles needing additional references
  • Pages using sidebar with the child parameter

  • indonesia
  • Polski
  • العربية
  • Deutsch
  • English
  • Español
  • Français
  • Italiano
  • مصرى
  • Nederlands
  • 日本語
  • Português
  • Sinugboanong Binisaya
  • Svenska
  • Українська
  • Tiếng Việt
  • Winaray
  • 中文
  • Русский
Sunting pranala
url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url url
Pusat Layanan

UNIVERSITAS TEKNOKRAT INDONESIA | ASEAN's Best Private University
Jl. ZA. Pagar Alam No.9 -11, Labuhan Ratu, Kec. Kedaton, Kota Bandar Lampung, Lampung 35132
Phone: (0721) 702022
Email: pmb@teknokrat.ac.id